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Surface forced internal waves and vortices in
uniformly stratified and rotating fluids
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The motion of an initially quiescent, incompressible, stratified and/or rotating
fluid of semi-infinite extent due to surface forcing is considered. The stratification
parameter N and the Coriolis parameter f are constant but arbitrary and all possible
combinations are considered, including N = 0 (rotating homogeneous fluid), f = 0
(non-rotating stratified fluid) and the special case N = f. The forcing is suction or
pumping at an upper rigid surface and the response consists of geostrophic flows and
inertial-internal waves. The response to impulsive point forcings (Green’s functions)
is contrasted with the response to finite-sized circularly symmetric impulsive forcings.
Early-time and large-time behaviour are studied in detail. At early times transient
internal waves change the vortices that are created by pumping/suction at the surface.
The asymptotically remaining vortices are determined, a simple expression for what
fraction of the initial energy is converted into internal waves is derived, as well as
wave energy fluxes and the dependence of the flux direction on the value of N/f.
The internal wave field is to leading order in time a distinct pulse, and rules for the
arrival time of the pulse, its amplitude, its motion along a ray of constant frequency
and decay with time, are given for the far field. A simple formula for the total wave
energy distribution as a function of frequency is derived for when all waves have
propagated away from the forcing.

1. Introduction
We consider the response of a uniformly stratified and/or rotating fluid to surface

forcing which is a prescribed vertical momentum flux ws at an upper rigid surface. In a
geophysical context this can be considered a study of the response of a continuously
stratified ocean to wind-stress forcing at the surface. Charney (1955) showed that
wind-stress forcing can be modelled by imposing a vertical velocity field which results
from the divergence of a viscous Ekman layer generated by surface winds. If steady
boundary layer dynamics is used (i.e. a balance between the Coriolis acceleration and
the stress) then the Ekman pumping at the base of the Ekman layer is (Pedlosky
1979) ws = z · ∇ ∧ (τ/ρ0f), with f the Coriolis parameter, ρ0 some average density,
τ the horizontal wind stress (vector), z the vertical unit vector pointing upwards
and ws the vertical Ekman pumping velocity (see figure 1). Such a flux excites an
internal wave field and can generate geostrophically balanced vortices or currents.
We assume the fluid layer to be initially quiescent and in its unperturbed state to
have an exponential stratification so that the Brunt–Väisälä frequency N is constant.
Fluid velocities are assumed small and the linearized dynamics for an inviscid and
incompressible fluid are used. N and f are arbitrary and when N 6= 0 the Boussinesq
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Figure 1. Diagram of how wind forcing leads to a vertical momentum flux ws (see text). The surface
in this diagram is the bottom of the surface Ekman layer. An anticyclone leads to pumping (as
sketched), a cyclone to suction.

approximation is made, i.e. density variations are only taken into account when
calculating buoyancy forces. We focus only on impulsive forcing, i.e. forcing of the
form ws ∝ δ(t). Alternatively, this can be considered a study of how certain initial
conditions evolve after the forcing has stopped. Some results for switch-on forcings
will also be mentioned.

In § 2 we briefly review the equations that govern the dynamics under the above-
mentioned approximations and the properties of linear inertial–internal waves that
a rotating stratified fluid can support (e.g. Eckart 1960; Phillips 1963; Hendershott
1969; Lighthill 1978; Gill 1982). We continue with a derivation of the appropriate
Green’s function for the horizontal velocity components u and v, the vertical velocity
w and pressure p. For given forcing ws the response is Gu ◦ ws, Gv ◦ ws, Gw ◦ ws and
Gp◦ws, respectively, where ◦ indicates convolution of the surface data with the Green’s
function(s). The present study concerns only the semi-infinite domain. For a layer of
constant depth with a rigid bottom and constant N, the (vector) Green’s function can
subsequently be constructed with the method of images but this is not done here.

In § 3 we study the early-time behaviour of the Green’s functions, i.e. the velocity
and pressure fields due to an impulsive point sink ws = δ(x)δ(y)δ(t) (for a source signs
need to be reversed). Cartesian coordinates {x, y, z} are used, with {x, y} the horizontal
ones and z the vertical coordinate. We contrast the results with two cases of forcing
of finite spatial scale. Both are circularly symmetric, i.e. functions of r = (x2 + y2)1/2.
One of them is ws = S(r; ε)δ(t), where the parameter ε is a measure for the horizontal
scale of the forcing. This function is such that limε→0 S(r; ε) → δ(x)δ(y) and in this
limit the singular behaviour of the Green’s functions is recovered. The other, more
complicated forcing is ws = −∂εS(r; ε)δ(t) = S ′(r; ε)δ(t). In § 3.1 early-time results
are discussed for the Green’s function when N = f and in § 3.2 for the finite-sized
forcings. This case is simple because the system cannot support propagating waves. It
has a ‘clay-like’ property such that when the forcing stops a geostrophically balanced
steady vortex immediately results. For N 6= f there are after initial stages of potential
flow and vortex formation additional adjustments which signal the start of internal
wave radiation. Early-time expansions in § 3.3 and § 3.4 show that first a flow in the
axial plane occurs. When f 6= 0 the Coriolis force acts on the horizontal component
of the axial flow, which changes the vortex.
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In § 4 the large-time behaviour of the response to an impulsive point sink or point
source is investigated and contrasted with the finite-sized forcing ws = S(r; ε)δ(t).
For the other finite-sized forcing some results are presented but due to mathematical
difficulties the analysis is far from complete. In § 4.1 we discuss the asymptotically
remaining vortices and in § 4.2 the ‘wavy’ part of the response to point forcing.
There are buoyancy oscillations when N 6= 0 (§ 4.2.1) which decay with time. Next
(§ 4.2.2) we discuss the internal wave field and find that velocity amplitudes grow
without bounds. Energy conservation appears violated but infinite energy is found
to be stored in the initial condition which is the source of the wave energy. The
wave energy flux is determined and we show how its direction varies as a function
of N/f. In § 4.3 we calculate the energy stored in the initial conditions created by
the two finite-sized forcings and the energy of the asymptotically remaining vortices.
The difference is the energy available for the propagating internal waves and non-
propagating oscillations. Section 4.4 concerns the asymptotic behaviour of the internal
wave field and oscillations due to the finite-sized forcing. In § 4.4.1 we show that the
internal waves propagate as a distinct pulse with amplitudes that remain finite at all
times. Underneath the forcing there are regions where either no waves occur at large
times or trapped waves with frequencies outside the range for freely propagating
internal waves. For the far field an excellent analytical approximation is derived. We
find simple formulas for when the pulse peaks as a function of observer position, the
amplitude of the peak, how fast the pulse moves along a ray of constant frequency
and how the amplitude of the peak decays as it moves along the ray. With the far-field
approximation we also determine how energy is distributed over the internal wave
frequency band. Finally, in § 4.4.2 the buoyancy oscillations are discussed and in § 4.4.3
the near-surface inertial oscillations which occur only for the finite-sized forcing.

In § 5 we summarize the main results and mention remaining unanswered questions
as well as other matters of possible interest. Many mathematical details are in the
Appendix.

2. Green’s functions
With the assumptions and approximations mentioned in the introduction, the

dynamics is governed by the equations

∂u

∂t
+ f ∧ u+

1

ρ0

∇p− bz = 0, ∇ · u = 0,
∂b

∂t
+N2w = 0, (1)

with f = fz, u the three-dimensional velocity vector, p pressure and b the buoyancy.
The total density is given by ρ = ρ̄(z) + ρ′(x, y, z; t), where ρ̄(z) is an average
background density, and ρ′(x, y, z; t) the deviation from that mean. The pressure p is
the deviation from the mean background pressure. In the Boussinesq approximation,
ρ̄(z) has been replaced by an average value ρ0 in the denominators of the pressure
and buoyancy terms in (1), i.e. b = −gρ′/ρ0 with g the gravitational constant. N is the
Brunt–Väisälä frequency: N = [−(g/ρ̄)∂zρ̄]1/2 which is assumed constant (exponential
stratification). By elimination the following equations for the vertical velocity w and
pressure p (Gill 1982) and for the two horizontal velocity components, u and v, are
found:[
∂2

∂t2
∇2 + f2 ∂

2

∂z2
+N2∇2

h

]
{w, p} = 0, ∂2

t ∂
2
z

[
∂2

∂t2
∇2 + f2 ∂

2

∂z2
+N2∇2

h

]
{u, v} = 0. (2)
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Figure 2. The relations between the direction of the wave vector k, the group velocity U g and the
direction of phase propagation of a plane wave in a rotating stratified fluid for (a) N > f and (b)
N < f. The velocity u is perpendicular to k and lies in the same plane as U g.

∇2 is the three-dimensional Laplace operator, ∇2
h the horizontal Laplace operator.

The dispersion relation is obtained by putting a plane wave ei(kx+ly+mz+ωt) in (2)

ω2 = f2 sin2 θ +N2 cos2 θ, (3)

where θ is the angle between the wave vector k = (k, l, m) and the horizontal plane
perpendicular to the axis of rotation, which is along the z-axis (see figure 2). If both
f and N are non-zero, frequencies lie between f and N (we take f positive). The
group velocity vector U g lies in the same plane as k but is perpendicular to it, i.e.
U g · k = 0. It has a magnitude

|U g| = 1

|k|
|N2 − f2|

(N2/ sin2 θ + f2/ cos2 θ)1/2
=
|N2 − ω2|1/2|f2 − ω2|1/2

|k|ω . (4)

Since U g · k = 0, θ is also the angle between the group velocity vector and the
vertical (see figure 2). The maximum group velocity for a given wave vector k, the
corresponding direction and frequency are

U gmax =
|N − f|
|k| , cos2 θmax =

f

N + f
, ω2

max = Nf. (5)

The group velocity associated with either ω = f or ω = N is zero. When N > f,
upward phase propagation implies downward group velocity and vice versa, whereas
when N < f phase propagation and group velocity are pointing both either up or
down (see figure 2). In the limit N = f a rotating stratified fluid cannot support
propagating internal waves.

There are various ways to find the Green’s functions. For our problem with a
prescribed boundary condition at the surface, it is most convenient to derive G{u,v,w,p}
as defined in the introduction directly from (1). In terms of components the set of
equations (1) is

ut−fv+px = 0, vt+fu+py = 0, bt+N
2w = 0, wt+pz−b = 0, ux+vy+wz = 0.

(6)
The boundary condition at z = 0 is

w(x, y, z = 0; t) = ws(x, y; t). (7)
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We have non-dimensionalized the equations as follows: t = Tt, {x, y, z} = L{x, y, z},
{u, v, w} = U{u, v, w}, p = (ρ0UL/T )p, b = (U/T )b, N2 = N2/T 2 and f = f/T , where
the left-hand sides are the original dimensional variables while the corresponding
variables on the right are the non-dimensional ones appearing in (6). L and U are
an arbitrary length scale and velocity scale, respectively. An arbitrary time scale T
instead of f−1 or N−1 is used which makes it more convenient to investigate the limits
f = 0 or N = 0. The forcing starts at t = 0 and initial conditions for the various
fields need to be supplied. The following transforms are applied to (6): a Laplace
transform in time, a Laplace transform in z, and a double Fourier transform in x, y.
For convenience we use the variable z′ = −z so that underneath the surface z′ is
positive. The sequence of transforms is

Lt =

∫ ∞
0

(·)e−ωt dt→Lz =

∫ ∞
0

(·)e−sz′ dz′ → FT =

∫ +∞

−∞

∫ +∞

−∞
(·)eikx+ily dx dy. (8)

After elimination of the buoyancy the following algebraic set of equations is found:
ω −f 0 −ik

f ω 0 −il

0 0 (ω2 +N2) −sω
−ik −il −s 0




u

v

w

p

 =


u0

v0

ωw0 + b0 − ωps
−ws

 , (9)

where on the left-hand side {u, v, w, p}(k, l, s;ω) are the transforms of the corresponding
fields and on the right-hand side ws(k, l;ω) is the transform of the prescribed vertical
velocity at the surface and ps(k, l;ω) the transform of an as of yet undetermined
surface pressure term. The quantities {u0, v0, w0, p0, b0}(k, l, s) are the transforms of the
fields at t = 0, i.e. the initial conditions. In concise notation (9) is A ·x = y, where A is
the 4× 4 matrix, x = (u, v, w, p)T and y = (u0, v0, (ωw0 + b0 − ωps),−ws)T (T standing
for transpose of the vectors). To solve for {u, v, w, p} we need the inverse A−1 of A
which is

A−1 =
1

|A|


−ω2s2 + l2(ω2 +N2) −fωs2 − kl(ω2 +N2)

fωs2 − kl(ω2 +N2) −ω2s2 + k2(ω2 +N2)

ωs(ωik − fil) ωs(ωil + fik)

(ωik − fil)(ω2 +N2) (fik + ωil)(ω2 +N2)

s(fil + ωik) (fil + ωik)(ω2 +N2)

s(ωil − fik) (ωil − fik)(ω2 +N2)

ω(k2 + l2) sω(ω2 + f2)

s(ω2 + f2) (ω2 + f2)(ω2 +N2)

 , (10)

where |A| = ω[(k2 + l2)(ω2 + N2) − s2(ω2 + f2)]. Assuming no initial motion and
hydrostatic balance (u0, v0, w0, b0 = 0), it follows that

u(k, l, s;ω) = (−fil − ωik)[sωps + (ω2 +N2)ws]/|A|,
v(k, l, s;ω) = (fik − ωil)[sωps + (ω2 +N2)ws]/|A|,
w(k, l, s;ω) = [−ω2(k2 + l2)ps − sω(ω2 + f2)ws]/|A|,
p(k, l, s;ω) = −(ω2 + f2)[sωps + (ω2 +N2)ws]/|A|.

 (11)
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Figure 3. The functions (a) S(r; ε) and (b) S ′(r, ε) defined by (16). Maximum amplitudes as a
function of the parameter ε are as indicated.

Next we need to calculate the inverse transforms

L−1
t =

1

2πi

∫ +i∞

−i∞
(·)eωt dω, L−1

z =
1

2πi

∫ +i∞

−i∞
(·)esz′ ds,

FT−1 =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
(·)e−ikx−ily dk dl. (12)

The contours for the inverse Laplace transforms run in the complex ω- and s-planes
to the right of the singularities that occur in the expressions given by (11). In the
Appendix the relation between the unknown surface pressure ps and the prescribed
surface forcing ws is determined through an examination of the radiation condition.
This accomplished, the transforms can be calculated and the result is

Gu = (f∂y + ∂t∂x)ψ, Gv = (−f∂x + ∂t∂y)ψ,

Gw = ∂z(∂
2
t + f2)h, Gp = −(∂2

t + f2)ψ, (13)

with

ψ =
U(t)

2πR

{
J0(ωit) +N

∫ t

0

∫ t′

0

J0(ωi(t
′ − t′′))J1(Nt

′′)
t′′

dt′′ dt′
}
,

h =
U(t)

2πR

∫ t

0

J0(ωi(t− t′))J0(Nt
′) dt′, (14)

and

ω2
i = f2(x2 +y2)/R2 +N2z2/R2 = f2 sin2 θ+N2 cos2 θ, R = (x2 +y2 +z2)1/2. (15)

R is the distance from the origin and ωi is the frequency of internal waves propagating
from the source at an angle θ with the vertical to the observer location (see (3)).
U(t) is the Heaviside stepfunction and J0, J1 are Bessel functions. This is the response
to ws(x, y; t) = δ(x)δ(y)δ(t), i.e. an impulsive point sink. Changing signs everywhere
gives the response to a source.

3. Green’s functions and finite-sized forcings: early-time behaviour
The response to the point forcing ws = δ(x)δ(y)δ(t) (Green’s functions) is contrasted

here and in subsequent sections with the response to two cases of circularly symmetric,
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finite-sized impulsive forcings ws = S(r; ε)δ(t) and ws = S ′(r; ε)δ(t) defined by

S(r; ε) =
ε

2π(ε2 + r2)3/2
, S ′(r; ε) = −∂εS(r; ε) =

2ε2 − r2

2π(ε2 + r2)5/2
. (16)

Here r = (x2 +y2)1/2 and ε > 0 is an arbitrary number. S and S ′ are shown in figure 3.
The integrals

∫ +∞
−∞
∫ +∞
−∞ S(r; ε) dx dy = 1 and S → δ(x)δ(y) in the limit ε → 0. In this

limit the results for ws = S(r; ε)δ(t) must coincide with the results for the Green’s
function. For S there is suction for all r (figure 3a). Figure 3(b) shows that for S ′
there is a region near the centre where suction occurs, whereas further out pumping
occurs. In this case

∫ +∞
−∞
∫ +∞
−∞ S

′(r; ε) dx dy = 0 and as much fluid as gets pumped in
gets sucked out elsewhere.

3.1. Special case N = f: Green’s functions

The limit N = f leads to the simplest form of the Green’s functions:

ψ =
U(t)

2πR
, (∂2

t + f2)h =
δ(t)

2πR
. (17)

The horizontal velocity field is according to (13)

uh = (Gu, Gv) = f∇h ∧ zψ + ∇h∂tψ, (18)

where ∇h is the horizontal gradient operator. With (13) we further find that

u =

up︷ ︸︸ ︷
∇ δ(t)

2πR
+

uvh︷ ︸︸ ︷
f∇h ∧ zU(t)

2πR
, p =

pp︷ ︸︸ ︷
−δ

′(t)
2πR

+

pv︷ ︸︸ ︷
−f2U(t)

2πR
, (19)

where a prime indicates a derivative. The first term of u represents potential flow up,
the second term a vortex with a horizontal swirling flow uvh. We use the additional
subscript h to indicate horizontal components. In the initial stage of the response the
dynamics proceeds as follows:

(1)︷ ︸︸ ︷
∂tup = −∇pp −→

(2)︷ ︸︸ ︷
∂tuvh = −fz ∧ uph −→

(3)︷ ︸︸ ︷
fz ∧ uvh = −∇hpv, (20)

that is, first potential flow is generated by the gradient of pp, then the Coriolis force
acts on the horizontal component of the potential flow up to generate the swirling
flow uvh which is in geostrophic balance with the pressure field pv (see figure 4). Stage
(1) shows that the Boussinesq fluid initially ignores both rotation and stratification
in accordance with Batchelor’s (1967) general discussion of the motion induced by
impulsive motion of boundaries in a fluid (see also Morgan 1953).

In cylindrical polar coordinates (r, φ, z), velocity fields have components (ur, uφ, w)
where ur is the velocity in the radial direction, uφ the velocity in the azimuthal direction
and w is still the vertical velocity (see figure 5). The gradient is ∇ = (er∂r, eφr

−1∂φ, z∂z)
with er the unit vector in the radial direction and eφ the unit vector in the azimuthal
direction. The potential flow is

up = δ(t)
{ −r

2πR3
er +

−z
2πR3

z
}

=
−δ(t)

2πR3

R

R
, R = (r2 + z2)1/2, (21)

where R is the position vector, and R/R the unit vector pointing from the sink position
(x = y = z = 0) to the observer position (remember that underneath the surface z is
negative). In figure 6(a) streamlines for (21) in the axial plane are superposed on the
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Figure 4. Initial stages of the response to a point sink ws = δ(x)δ(y)δ(t) given by (20) (see text)
with (a) side view of the potential flow up, (b) top view of the Coriolis acceleration F = −fz ∧ uph

and (c) perspective view of the resulting cyclone. Highest amplitudes occur near the surface.
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Figure 5. The cylindrical polar coordinate system (r, φ, z) and the corresponding velocity
components (ur, uφ, w).

velocity amplitude. At the sink position R = 0, up becomes infinite. The swirling flow is

uvh = −f∂rψeφ = fU(t)
r

2π(r2 + z2)3/2
eφ. (22)

It is in the direction of eφ everywhere, i.e. clockwise or cyclonic. The potential flow
is towards the sink position and the creation of a cyclone is thus easily explained.
By changing signs we get the response to a point source at the surface. The potential
flow is then away from the source point and an anticyclone forms. In figure 7(a) uvh

is shown at the surface and at some distance below the surface. At the surface uvh

becomes infinite at the sink position r = 0.

Figure 7. Velocity amplitudes (colour) of the cyclones uvh for (a) ws = δ(x)δ(y)δ(t) given by (22),
(b) ws = S(r; ε)δ(t) given by (25) and (c) ws = S ′(r; ε)δ(t) given by (27). In (a) velocity amplitudes
have been deleted between z = −ε and the surface z = 0. Amplitudes have been normalized by the
maximum in each case. Above, the velocity profiles at the surface z = 0 and z = −ε are shown. For
the point sink (a) the velocity approaches infinity near z = r = 0. The velocity profiles in (b) and (c)
have been normalized by the maximum that occurs at the surface. In (a) they have been normalized
with the maximum that occurs at z = −ε. For a description of the difference between the cyclones
shown in (b) and (c) see text. The profile in (a) at z = −ε is equal to that in (b) at z = 0.

Figure 8. Contours (white) of the Stokes streamfunction ψs for the O(t)-axial flow for (a) ws =
δ(x)δ(y)δ(t) given by (30), (b) ws = S(r; ε)δ(t) given by (32) and (c) ws = S ′(r; ε)δ(t) given by (33).
Colouring indicates velocity amplitudes normalized by the maximum. In (a) velocities have been
deleted in an area around the sink where they get very large. The dotted line in (a) and (b) marks
the dividing line between the zones of inward and outward acceleration. Flow directions depend on
the value of N/f (see text).



Surface forced internal waves and vortices 47

(a) (b) (c)
1.0

0

0.6

0.8

0.4

0.2

0 e0 e0

z

r r r

0

Figure 6. Streamlines (white) plus velocity amplitudes (colour) for the potential flow up for (a)
ws = δ(x)δ(y)δ(t) given by (21), (b) ws = S(r; ε)δ(t) given by (24) and (c) ws = S ′(r; ε)δ(t) given by
(26). In (a) velocity amplitudes have been deleted in a small hemisphere surrounding the point sink
where they tend to infinity. Amplitudes have been normalized by the maximum; the flow is inwards
along the streamlines; for sources the flows are outwards.
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Figure 7. For caption see facing page.
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For forcing ws = δ(x)δ(y)F(t) with F(t) some rate of pumping/suction the solution
is

u = ∇F(t)

2πR
+ f∇h ∧ zM(t)

2πR
, p = −F

′(t)
2πR

− f2M(t)

2πR
, (23)

where M(t) =
∫ t

0
F(t′)dt′. The amplitude of the vortex is proportional to the removed

or injected mass M(t). Irrespective of the time-dependence of the forcing, the potential
flow and the vortex become unbounded as one approaches the source position R = 0.
The singular behaviour disappears when finite-sized forcings are used.

3.2. Special case N = f: finite-sized forcings

Now consider the example of the circularly symmetric forcing ws = S(r; ε)δ(t) with S
defined in (16) and shown in figure 3(a). The potential flow is

up = δ(t)

{ −r
2πR3

ε

er +
(−z + ε)

2πR3
ε

z

}
=
−δ(t)

2πR3
ε

Rε

Rε
, Rε = (r2 + (−z + ε)2)1/2. (24)

Rε is the position vector measured from an apparent δ-sink position above the surface
at z = ε. Streamlines for (24) in the axial plane and the velocity amplitude are
shown in figure 6(b). At the surface z = 0 the vertical component of up is equal to
ws = S(r; ε)δ(t), i.e. the boundary condition is satisfied and up is well-behaved for all
r and z 6 0. The vortex is a cyclone

uvh = fU(t)
r

2π(r2 + (−z + ε)2)3/2
eφ, (25)

which is also well-behaved for all r and z 6 0 as is seen in figure 7(b) where uvh

is shown at the surface and at some distance below it. In the limit ε → 0 (21) and
(22) are recovered. For ws = −S(r; ε) (pumping instead of suction) the sign in (25)
changes, and an anticyclone forms. For switch-on forcing ws = S(r; ε)F(t), (23) holds
with R replaced by Rε, that is, δ(t) in (24) is replaced by F(t) and U(t) in (25) by
M(t).

The response to the forcing ws = S ′(r; ε)δ(t), with S ′ defined in (16) and shown in
figure 3(b), is obtained by taking the −∂ε-derivative of (24) and (25):

up = δ(t)

{−3r(−z + ε)

2πR5
ε

er +
2(−z + ε)2 − r2

2πR5
ε

z

}
(26)

and

uvh = fU(t)
3r(−z + ε)

2π(r2 + (−z + ε)2)5/2
eφ. (27)

Streamlines for (26) in the axial plane and the velocity amplitude are shown in
figure 6(c). Although the net mass flux is zero a cyclone forms whereas for ws = −S ′δ(t)
an anticyclone results. In the latter case there is pumping near the centre and suction
at larger r (figure 3b with the sign of S ′ changed). Figure 7(c) shows uvh, at the surface
and below it. This cyclone decays faster with depth than the one shown in figure 7(b)
when there was suction everywhere. The latter has its maximum at r = (−z + ε)/

√
2

and the amplitude there is proportional to (−z+ ε)−2 whereas the vortex of figure 7(c)
has its maximum at r = (−z + ε)/2 with an amplitude proportional to (−z + ε)−3.
There is also a difference in the horizontal in that the vortex of figure 7(b) decays
with r−2 for large r whereas the vortex of figure 7(c) decays with r−4.
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3.3. General case N 6= f: Green’s functions

The above completes the analysis for N = f for all times. No matter what forcing
is used, geostrophically balanced flows result. In the general case however there are
subsequent adjustments. The response to ws = δ(x)δ(y)δ(t) at early times is

ψ =
U(t)

2πR
+U(t)

(N2 − f2)r2

8πR3
t2 + O(t4),

(∂2
t + f2)h =

δ(t)

2πR
+U(t)

(f2 −N2)(r2 + 2z2)

4πR3
t+ O(t3). (28)

The first terms are as before, the second terms represent adjustments that follow when
N 6= f. There is an O(t)-flow in the axial plane with radial and vertical velocity

ur = U(t)
(N2 − f2)r(2z2 − r2)

4π(r2 + z2)5/2
t, w = −U(t)

(N2 − f2)z(r2 − 2z2)

4π(r2 + z2)5/2
t. (29)

The two velocity components are related to a Stokes streamfunction ψs according to

ur = −1

r

∂ψs

∂z
, w =

1

r

∂ψs

∂r
, ψs = U(t)

(N2 − f2)zr2

4π(r2 + z2)3/2
t. (30)

Contours of ψs and the velocity amplitude are shown in figure 8(a). The velocity vector
in the (r, z)-plane is along lines of constant ψs, defined by z/r = constant. According
to (29) for N > f there is at early times a tendency for the fluid to accelerate radially
inward in the near-surface region |z| < r/

√
2 and radially outward where |z| > r/

√
2.

The dotted line is the dividing line |z| = r/
√

2 between the inflow and outflow regions.
For N < f directions are reversed: outflow near the surface and inflow at greater
depths. The inflow and outflow meet at the sink position where amplitudes become
infinite. Integration over the surface of an arbitrarily small hemisphere placed around
the sink position shows that the net mass flux associated with the O(t) potential flow
is zero. Consequently, an equal amount of fluid moving towards the singular point
(sink position) flows out elsewhere. The singular behaviour near the sink position
obscures how the inflow and outflow are connected. The inward flow near the surface
(N > f case) is acted upon by the Coriolis force when f 6= 0, and stronger cyclonic
flow near the surface results. The outward flow at greater depths similarly leads to
a decrease in cyclonic flow. For weak stratification (N < f) directions are reversed
and opposite tendencies result, i.e. less cyclonic motion near the surface and more at
greater depths. This is clear from the O(t2) correction to (22)

uvh = fU(t)
r

2π(r2 + z2)3/2

[
1 + (N2 − f2)

r2 − 2z2

4(r2 + z2)
t2 + O(t4)

]
eφ. (31)

For an impulsive point source, directions are reversed: an anticyclone is created when
f 6= 0 while at O(t) for N > f there is an outward flow near the surface and an
inward flow where |z| > r/

√
2. For N > f the anticyclone increases in strength near

the surface, for N < f it weakens.

3.4. General case N 6= f: finite-sized forcings

For the finite-sized forcing ws = S(r; ε)δ(t) there is again first potential flow (24) and
then vortex formation (25) (when f 6= 0) as in the special case N = f. This is followed
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by an O(t)-flow in the axial plane with streamfunction

ψs = U(t)
(N2 − f2)zr2

4π(r2 + (−z + ε)2)3/2
t. (32)

Contours of ψs and the velocity amplitude are shown in figure 8(b). When the sink
was infinitely concentrated at the surface (ε = 0), for N > f a radial inflow near the
surface occurred, while there was an outflow away from the sink position in the lower
region (figure 8a). Both inflow and outflow appeared to collide at the singular point
r = z = 0. With this sink of finite size, we see how the inwards accelerating flow is
connected to the outflow. Figure 8(b) shows that the fluid which accelerates up and
towards the axis r = 0 turns around and then accelerates away from the axis. In the
limit ε→ 0 the pattern of figure 8(a) is recovered. For N < f flow directions reverse.

For the forcing ws = S ′(r; ε)δ(t) the quickest way to obtain the response is by taking
the −∂ε-derivative of the expressions for ws = S(r; ε)δ(t). For N 6= f (26) and (27) are
again the initial potential flow and vortex, respectively. For the O(t)-flow

ψs = −∂ε(32) = U(t)
3(N2 − f2)z(−z + ε)r2

4π(r2 + (−z + ε)2)5/2
t. (33)

Contours of ψs plus the velocity amplitude are shown in figure 8(c). A markedly
different pattern is seen here as compared to the streamlines for the O(t)-flow shown
in figure 8(b). No matter how far we ‘zoom out’ in the latter, flow lines never connect.
In the present case the streamlines are closed. But, when N > f the flow near the
surface is again inwards and at greater depths outwards. When N < f these directions
are reversed. In both cases the Coriolis force accelerates the O(t) axial flow in the
azimuthal direction. This results in an O(t2)-change to the vortex (25)

uvh = fU(t)
r

2π(r2 + (−z + ε)2)3/2

[
1 + (N2 − f2)

r2 − 2z2 + εz + ε2

4(r2 + (−z + ε)2)
t2 + O(t4)

]
eφ. (34)

In the limit ε→ 0 this is (31). For N > f the O(t)-inflow near the surface (small |z|)
leads to stronger cyclonic flow near the surface while the outflow at greater depths
(large |z|) leads to a decrease in cyclonic flow. For weak stratification (N < f) opposite
tendencies result, i.e. less cyclonic motion near the surface and more at greater depths.
The O(t2) correction to (27) i.e. −∂ε(34), looks less simple than (34) but the same
tendencies result. The O(t)-flows (30), (32) and (33) signal the onset of internal wave
propagation. The Coriolis force acts on the internal wave motion which modifies the
vortices. The waves propagate away and the vortices ultimately reach an equilibrium,
which is discussed below.

4. Green’s functions and finite-sized forcings: large-time behaviour
4.1. Vortices

For the impulsive forcings discussed above the horizontal velocity, pressure and
vertical velocity are uh = f∇h ∧ zψ + ∇h∂tψ, p = −(∂2

t + f2)ψ and w = ∂z(∂
2
t + f2)h.

Simple asymptotic techniques discussed in the Appendix show that for large times
the response can generally be broken up in several distinct pieces: ψ = ψ∞ + ψN +
ψf + ψi and h = hN + hf + hi where the subscripts N, f and i indicate buoyancy
oscillations, inertial oscillations and internal waves, respectively, and the subscript ∞
an asymptotically steady, non-oscillatory component. When f 6= 0 a vortex remains
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in the limit t→∞ with a streamfunction ψ∞ and swirling velocity uvh∞ = −f∂rψ∞eφ:

ws = δ(x)δ(y)δ(t) : ψ∞ =
N/f

2π(r2 + (N/f)2z2)1/2
,

uvh∞ =
Nr

2π(r2 + (N/f)2z2)3/2
eφ, (35)

ws = S(r; ε)δ(t) : ψ∞ =
N/f

2π(r2 + (−(N/f)z + ε)2)1/2
,

uvh∞ =
Nr

2π(r2 + (−(N/f)z + ε)2)3/2
eφ, (36)

ws = S ′(r; ε)δ(t) : ψ∞ = −∂ε N/f

2π(r2 + (−(N/f)z + ε)2)1/2
,

uvh∞ =
3Nr(−(N/f)z + ε)

2π(r2 + (−(N/f)z + ε)2)5/2
eφ. (37)

Comparing these expressions with (22), (25) and (27) we find that at the surface
(z = 0) the swirling velocity distribution is as before but has changed in amplitude by
a factor N/f. Instead of z we have (N/f)z everywhere which implies that for N > f
the vortices are asymptotically more confined in the vertical with higher amplitudes
than initially and for N < f more stretched in the vertical with lower amplitudes, as
anticipated in § 3.3 and § 3.4. For decreasing N the vortices get more spread out in the
vertical, which can be interpreted as a tendency towards Taylor-column formation,
with a decreasing overall amplitude. In the limit N = 0 (rotating homogeneous fluid)
the vortices asymptotically vanish. In §3.1 and § 3.2 we showed that when N = f
no propagating waves exist and that when in each case δ(t) is replaced by some
F(t) (switch-on forcing) the vortex’s amplitude is at any instant proportional to
M(t) =

∫ t
0
F(t′) dt′. It is not when N 6= f but under some mild restrictions on F(t) (see

Appendix) that asymptotically the vortex’s amplitude will be proportional to M(∞).

4.2. Asymptotic waves and buoyancy oscillations for Green’s functions

For the Green’s function there are asymptotically internal waves and when N 6= 0
buoyancy oscillations:

ψN = 2Re
Nei(Nt+π/4)

(2π)3/2R(N2 − ω2
i )

1/2

1

(Nt)3/2
[1 + ΥψN ],

hN = 2Re
ei(Nt−3π/4)

(2π)3/2R(N2 − ω2
i )

1/2

1

(Nt)1/2
[1 + ΥhN ],

ψi = 2Re
(N2 − ω2

i )
1/2ei(ωit−3π/4)

(2π)3/2Rωi

1

(ωit)1/2
[1 + Υψi],

hi = 2Re
ei(ωit−π/4)

(2π)3/2R(N2 − ω2
i )

1/2

1

(ωit)1/2
[1 + Υhi].



(38)
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Here Re stands for the real part of the complex expressions. When N = 0 there are
only propagating internal waves and ψN = hN = 0. The asymptotic errors are

ΥψN , ΥhN = O((Nt)−1, t−1
N ), Υψi , Υhi = O((ωit)

−1, t−1
i ),

tN = |N2 − ω2
i |t/N, ti = |N2 − ω2

i |t/ωi. (39)

For N = 0 the leading-order behaviour of ψi, hi is valid to a high degree of precision
when (ωit)

−1 � 1. Since ωi = f| sin θ| when N = 0 (θ is defined in figure 2), it follows
that in the region of low-frequency oscillations ωi � f (a vertical cone about the axis
r = 0 with | sin θ| small) the algebraic decay of the oscillations occurs later than in the
high-frequency region ωi ≈ f near the surface. In the general case the leading-order
behaviour of the buoyancy and internal wave components is valid when the scaled
times {(Nt), tN} � 1, {(ωit), ti} � 1, respectively. Thus again in the vertical cone with
| sin θ| small where ωi ≈ N the algebraic decay of the oscillations occurs later than
near the surface where ωi ≈ f. When f = 0 there is an additional region near the
surface (with θ ≈ π/2) where the required waiting period is long because there ωi ≈ 0.

4.2.1. Buoyancy oscillations

The velocity components of the buoyancy oscillations are

{ur, uφ, w} = 2Re
{Nr, ifr, Nz}Nei(Nt−π/4)

(2π)3/2r3(N2 − f2)1/2

1

(Nt)3/2
[1 + O((Nt)−1) + O(t−1

N )]. (40)

If Nt� 1 the leading-order behaviour is only correct when also tN � 1, i.e. for large
|z| where ωi → N the behaviour given by the first term occurs later than near the
surface (small |z|) where ωi ≈ f; w and ur are in phase and in the limit f = 0, uφ = 0
and there are just radial oscillations along lines θ = constant as noted by Voisin
(1991) in a slightly different problem (internal point source/sink in an unbounded
stratified fluid). Our solution when f = 0 is a modification of that case in that a
uφ-component is generated by the Coriolis force acting on the horizontal component
of the radial pulsations (∂tuφ = −fur). At the surface the motion is horizontal with
a velocity vector which rotates in clockwise direction when f 6= 0 with an elliptical
polarization. The ratio of the axes in the azimuthal direction and the radial direction
of the ellipse is f/N. With increasing time the horizontal velocity amplitude becomes
depth-independent in areas where tN � 1. This is outside a cone about the vertical
axis with an angle θ that decreases with time. At the sink position (r, z = 0) amplitudes
remain infinite at all times.

4.2.2. Internal gravity waves

For the internal gravity wave components of the Green’s function we need to
differentiate ψi and hi. Since ωi is a function of the spatial coordinates, differentiation
brings down terms i∂rωit, i∂zωit from the exponent and to leading order the amplitudes
of the internal gravity wave components grow with t1/2:

{ur, uφ, w} ≈ 2Re
{ωir, ifr, ωiz}(f2 − ω2

i )(N
2 − ω2

i )
1/2ei(ωit+π/4)

(2π)3/2R3ω3
i

(ωit)
1/2

≡ {u1/2
r , u

1/2
φ , w1/2}. (41)

Superscripts 1/2 indicate components that grow with t1/2. For f = 0 this reduces to
results (apart from a factor 2) cited by Voisin (1991) for the internal wave field due
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xi + dxi

xi

dh

dR dφ

dS

dV

IR

Figure 9. Diagram showing a volume element dV = R2 sin θ dφ dθ dR and an area element
dS = R2 sin θ dφ dθ on a sphere of constant R. ωi is constant on rays of θ = constant (see figure 2).
The rate of change of wave energy W is determined by the net radial energy flux IR into the volume
element dV .

to a point source in an unbounded stratified fluid. Unbounded growth of the total
energy density W = 1

2 (u
2
r + u2

φ + w2) + 1
2N

2ξ2 occurs, with ξ =
∫
w dt the vertical

displacement. This appears to violate energy conservation but this is not so. The
reason is that the unbalanced initial condition contains infinite energy. For instance
when we integrate over the half-space z < 0 in spherical coordinates, we find that the
initial vortex (22) has total kinetic energy

Ek(0) =

∫ ∞
0

∫ π/2

0

∫ 2π

0

1
2
|uvh|2R2 sin θ dφ dθ dR =

f2

4π

∫ ∞
0

∫ π/2

0

sin3 θ

R2
dθ dR,

which is infinite. The initial displacement ξ =
∫ 0+

wp dt, with wp the vertical velocity
of the potential flow (21), is ξ = −z/2πR3. The initial total potential energy is

Ep(0) = 1
2
N2

∫ ∞
0

∫ π/2

0

∫ 2π

0

ξ2R2 sin θ dφ dθ dR =
N2

4π

∫ ∞
0

∫ π/2

0

cos2 θ sin θ

R2
dθ dR,

which is also infinite. An unlimited supply of energy is therefore stored in the initial
condition.

The time rate of change of the energy density is ∂tW = −∇· I with the wave energy
flux I = pu (Lighthill 1978). To leading order

p = −(∂2
t + f2)ψi ≈ 2Re

(f2 − ω2
i )(N

2 − ω2
i )

1/2ei(ωit+π/4)

(2π)3/2Rωi(ωit)1/2
≡ p−1/2, (42)

which decays with t−1/2. Combining the components of I = p−1/2[u
1/2
r er+u

1/2
φ eφ+w1/2z]

along er and z into a radial component in spherical coordinates

I = cos2(ωit+ φi)
4(f2 − ω2

i )
2|N2 − ω2

i |
(2π)3R3ω3

i

R

R
+ Iφeφ, Iφ = p−1/2u

1/2
φ . (43)

The phase φi = π/4 when N > f and 3π/4 when N < f. If this is averaged over a
period ∆t = 2π/ωi we get Iφ = 0 (a bar indicating the time-average) because p−1/2

and u
1/2
φ are 90◦ out of phase. But, p−1/2 and u1/2, w1/2 are in phase. On average the

wave flux is thus along the vector R/R, i.e. along lines of θ = constant or constant
ωi. For ∇ · I the second term in (43) is irrelevant anyway because the fields do not
depend on the angle φ. Defining W ′ = WR2 sin θ so that W ′ is the energy density for
volume elements dV spanned by dφ dθ dR (see figure 9), we find

∂tW
′ = [1 + cos 2ϕ(t)]F(ωi, R), F =

2(f2 − ω2
i )

2|N2 − ω2
i |3/2

(2π)3|N2 − f2|1/2ω3
i

1

R2
, (44)

with ϕ(t) the argument of the cosine in (43). Time-integration shows that on average
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W ′ increases linearly with time, obviously because of the t1/2-growth of the velocity
components.

Since we have exact expressions for the leading-order behaviour we can directly
calculate W ′. The kinetic energy density associated with the radial oscillations is

E
1/2
kR = 1

2
[(u1/2

r )2 + (w1/2)2]R2 sin θ = t[1 + cos 2ϕ(t)]F/2. (45)

The kinetic energy density of the azimuthal velocity component is

E
1/2
kφ = 1

2
(u

1/2
φ )2R2 sin θ = t[1− cos 2ϕ(t)]

(
f2r2

ω2
i R

2

)
F/2. (46)

The displacement ξ =
∫ t

0
w dt′ is

ξ ≈ 2Re
{−iz}(f2 − ω2

i )(N
2 − ω2

i )
1/2ei(ωit+π/4)

(2π)3/2R3ω3
i

(ωit)
1/2 ≡ ξ1/2; (47)

ξ1/2 is 180◦ out of phase with u
1/2
φ . The potential energy density is

E1/2
p = 1

2
N2(ξ1/2)2R2 sin θ = t[1− cos 2ϕ(t)]

(
N2z2

ω2
i R

2

)
F/2. (48)

E
1/2
kφ and E

1/2
p are zero when E

1/2
kR is maximal and vice versa. It follows that

W ′ = E
1/2
kR + E

1/2
kφ + E1/2

p = tF. (49)

It is not clear why Lighthill’s flux recipe (44) does give the correct result when
averaged over time but appears not correct for any t, not even for a stratified fluid
(f = 0) for which he derived the theory.

By solving ∂ωiF = 0, it is found that at any time for f = 0 (non-rotating stratified
fluid) the wave energy density W ′ has a maximum at the angle θmax = π/3, in the
limit f → N at θmax = π/4 and for N = 0 (rotating homogeneous fluid) at θmax = 0.
We have plotted R2 ×W ′ in figure 10 for a few combinations of f and N. At a given
time this only depends on θ and clearly shows how W ′ varies with θ.

If we consider a small volume element dV as sketched in figure 9, then the rate of
change of wave energy is determined by the difference between the flux that leaves the
volume at R + dR and what enters at R. On average it is only the radial component
IR of I (the first component in (43)) that pumps energy into the volume element. The
radial flux through a small area element dS on a sphere R = constant (see figure 9)
is IRR

2 sin θ dφ dθ = I ′R dφ dθ, where I ′R is the radial flux for given R per unit area
measured by θ and φ. It has a magnitude

|I ′R| = [1 + cos 2ϕ(t)]FR. (50)

Thus, the radial flux varies with θ just as the wave energy density (49) does. At any
instant the quantity |I ′R| × R like W ′ × R2 depends only on θ and figure 10 therefore
also provides a picture of how the flux varies with direction. It shows that the flux
rotates away from the horizontal towards the vertical as N becomes smaller. For
N = 0 the maximum flux is in the vertical (θmax = 0), when f = 0 the maximum flux

is at the angle θmax = π/3. Comparison of (50) and (45) shows that |I ′R| and E
1/2
kR vary

in the same fashion with θ. Thus, not surprisingly, the highest flux occurs where the
radial oscillations have the highest amplitudes.
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FIGURE 11.

Figure 10. The wave energy density W ′ given by (49) at a given time multiplied by R2 and normalized by the maximum for (a) f = 0, (b) N = 2f,
(c) f = 2N and (d) N = 0. Also, the magnitude of the radial flux |I ′R | given by (50) at a given time multiplied by R (see text). White lines show rays at
an angle θmax with the vertical along which the flux/energy is maximal. θmax = π/3 when f = 0, θmax = 0.27π for N = 2f, θmax = 0.18π for f = 2N and
θmax = 0 when N = 0.

Figure 11. The kinetic energy density E
−1/2
kR × R2 associated with the O(t−1/2)-radial oscillations and normalized by the maximum for (a) f = 0,

(b) N = 2f, (c) f = 2N and (d) N = 0. They can also be interpreted as showing the total wave energy density (multiplied by R2) associated with the
t−1/2-velocity components and vertical displacement of the internal wave field. For N = 0 the radial oscillations vanish at sin θ = 1/3, for f = 0 at
sin θ = 2/3.
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The O(t−1/2)-correction for the gravity waves is

{u−1/2
r , u

−1/2
φ , w−1/2} = 2 Re

{ωirU(ωi), ifrV (ωi), ωizU(ωi)}(N2 − ω2
i )

1/2ei(ωit+3π/4)

(2π)3/2R3ωi(ωit)1/2
,

(51)

where

U(ωi) = 1 + 1
2 (f

2 − ω2
i )[(N

2 − ω2
i )
−1 + (3/4)ω−2

i ], V (ωi) = U(ωi) + 1
2
(f2 − ω2

i )ω
−2
i .

When f 6= 0 there are inertial oscillations at the surface:

{u−1/2
r , u

−1/2
φ }z=0 = 2Re

{f, if}(N2 − f2)1/2 ei(ft+3π/4)

(2π)3/2r2(ft)1/2
.

The t−1/2-component (51) complements the O(t1/2)-component (41) in that where the
latter has small amplitudes in space (disregarding the time-dependence) the former

has not. To illustrate this we show in figure 11 R2 × E−1/2
k with E

−1/2
kR defined like

E
1/2
kR . This is for some fixed time: E

−1/2
k decays with t−1 whereas E

1/2
k grows with t.

The angular areas of low amplitude seen in figure 11 are centred about an angle θmin

where u−1/2 and w−1/2 vanish, i.e. where U(ωi) = 0. As one crosses θmin the phase
of the radial oscillations jumps by a factor π (on both sides of θmin the oscillations

are 180◦ out of phase). Note that |u1/2
r /u

1/2
φ | = ωi/f, u

1/2
r /w1/2 = r/z = − tan θ, i.e.

the polarization relations for freely propagating internal waves in a rotating fluid
are satisfied (Gill 1982). This is not true for the t−1/2-components in (51) because
U(ωi) 6= V (ωi).

4.3. Loss of initial energy to internal waves and oscillations

In each case of the impulsive forcing discussed an initial condition is set up which
evolves into propagating waves, non-propagating decaying oscillations and when
f,N 6= 0, an asymptotically steady vortex. For convenience we refer to both the
internal waves and the oscillations as ‘waves’. We determine here how much of the
initial total energy Etot(0) = Ek(0) + Ep(0) (kinetic plus potential) goes to them.
For the Green’s function Etot(0) is infinite and the internal wave amplitudes could
accordingly grow without bounds. For the finite-sized forcings Etot(0) is finite. We
have to calculate Etot(0) for both cases and also the kinetic energy of the asymptotic
vortex Ev

k (∞) and the potential energy associated with the asymptotically remaining
vertical displacement field Ev

p (∞). The superscript v indicates that these quantities are
associated with the vortex. The energy Ei that has gone into the waves is then

Ei = Etot(0)− [Ev
k (∞) + Ev

p (∞)]. (52)

Ek(0) =
∫ |uvh|2 dV where

∫
dV indicates integration over the half-space z 6 0

and uvh is from either (25) or (27). The initial vertical displacement ξ =
∫ 0+

wp dt
equals the vertical velocity component wp of the potential flow (24) or (26), and
Ep(0) = 1

2
N2
∫
ξ2 dV . Further, Ev

k (∞) =
∫ |uvh∞|2 dV where uvh∞ is (36) or (37). For

Ev
p(∞) = 1

2
N2
∫
ξ2(∞) dV we have to determine ξ(∞) =

∫ ∞
0
w dt. The result is

ws = S(r; ε)δ(t) : ξ(∞) =
(−(N/f)z + ε)

2π(r2 + (−(N/f)z + ε)2)3/2
,

ws = S ′(r; ε)δ(t) : ξ(∞) =
2(−(N/f)z + ε)2 − r2

2π(r2 + (−(N/f)z + ε)2)5/2
.
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Figure 12. Fraction of total initial energy Etot(0) converted to internal waves and oscillations for
both finite-sized forcings ws = S(r; ε)δ(t) and ws = S ′(r; ε)δ(t).

To calculate the energy of the initial conditions we employ a coordinate system with
the origin at z = ε and use spherical coordinates {Rε, θ, φ} with Rε defined by (24).
For the asymptotic energy calculations we use the same coordinate system but with
z replaced by (N/f)z in Rε. With constants σ and ς for ws = S(r; ε)δ(t) and σ′ and ς′
for ws = S ′(r; ε)δ(t) we find

Ek(0) = {σ, σ′}f2, Ep(0) = {ς, ς′}N2, Ev
k(∞) = {σ, σ′}Nf, Ev

p(∞) = {ς, ς′}Nf.
(53)

Despite the fact that the integrals are quite different, σ = ς = (1/4)(4πε)−1 and
σ′ = ς′ = (9/24)(12πε3)−1. In both cases

Ev
k(∞) + Ev

p(∞)

Etot(0)
=
Ev

tot(∞)

Etot(0)
=

2Nf

N2 + f2
.

For all combinations of N 6= f the ratio is smaller than one. When f = 0 or N = 0
this vanishes because then there is no asymptotic vortex and all energy stored in the
initial condition goes to the waves. In the limit N = f the right-hand side equals one,
which is when the system cannot support propagating waves and the initial vortex
remains unchanged. The energy Ei (52) that goes to the waves is

Ei =
(N − f)2

N2 + f2
Etot(0). (54)

In figure 12 we show how Ei/Etot(0) varies with N/f. Taking f 6= 0 it shows that
for N = 0 the initial vortex in the semi-infinitely deep rotating homogeneous fluid
disappears and all energy goes to the waves. When N = f no waves are excited and
for large N/f most energy goes again to the waves.

4.4. Asymptotic waves and oscillations for a finite-sized forcing

We investigate the asymptotic properties here of the oscillatory part of the response
to the forcing ws = S(r; ε)δ(t). It requires a careful examination of the properties of
the inverse Laplace transformL−1

t of a complicated function. In order not to distract
from the main results, mathematical details are in the Appendix. In the complex
ω-plane this function has a pole at ω = 0 which determines the asymptotic vortices
discussed above. There are branch points at ω = ± iN giving rise to buoyancy
oscillations, branch points at ω = ± if which give inertial oscillations and four
movable branch points, two of which are ‘visible’ on the Riemann sheet where the
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inverse transform takes place. They are (where ? stands for complex conjugate)

ω− = −ωr + iωε
i , ω?

− = −ωr − iωε
i , (55)

where

ω2
− =

%2N2 − f2

1− %2
, % = z/(ir − ε). (56)

They determine the internal wave field of which the velocity components have
amplitudes that vary to leading order with t1/2 e−ωrt+iωεi t, disregarding complex phase
factors and spatial dependence of amplitudes. Contours of the distribution of ωε

i are
shown in figure 13. In each example there are regions underneath the surface, bounded
in the horizontal by r = ε, where ωε

i is outside the frequency range of propagating
internal waves. No contours have been drawn there of ωε

i : they are closed and if
waves exist there, they are trapped. All frequencies meet at the singular point z = −ε.
Contours of ωr are shown in figure 14. In each case ωr is large near the singular point
z = −ε. Regions where ωr exceeds the highest possible frequency that can occur in
the system have been left empty. In areas of large ωr the waves will rapidly disappear.
In the Appendix we derive the approximations

ωε
i
2 ≈ ω′i2 =

f2(r2 + ε2)

R′2
+
N2z2

R′2
, ωr ≈ −εz|(f

2 − ω′i2)1/2(N2 − ω′i2)1/2|
ω′iR′2

,

R′ = (r2 + z2 + ε2)1/2. (57)

Figures 13 and 14 show that these are good approximations far from the forcing
region. For r, |z| � ε both ωε

i and its far-field approximation ω′i become constant on
cones of constant angle θ, i.e. they approach ωi defined by (15).

4.4.1. Internal gravity waves

To leading order the velocity components of the internal wave field are

{u1/2
r , u

1/2
φ , w1/2}

= 2Re
{ωε

i r, (iω
ε
i /ω−)ifr, ωε

i (z + ε%)}(f2 + ω2−)(N2 + ω2−)1/2e−ωrt+i(ωεi t+π/4)

(2π)3/2R′3P 3/2ωε
i
3

(ωε
i t)

1/2,

(58)

the pressure is

p−1/2 = 2Re
(iωε

i /ω−)(f2 + ω2−)(N2 + ω2−)1/2e−ωrt+i(ωεi t+π/4)

(2π)3/2R′P 1/2ωε
i (ω

ε
i t)

1/2
, (59)

and the vertical displacement is

ξ1/2 = 2Re
−(iωε

i /ω−)i(z + ε%)(f2 + ω2−)(N2 + ω2−)1/2e−ωrt+i(ωεi t+π/4)

(2π)3/2R′3P 3/2ωε
i
3

(ωε
i t)

1/2. (60)

The complex function P is defined in the Appendix (A 31). It is very tedious to
determine the higher-order corrections and no transparent error estimates can be
provided. In the limit ε → 0 it is found that P → 1, R′ → R and i(ωε

i /ω−) → 1
(ω− → iωi and ωr → 0). The expressions (41), (42) and (47) for the Green’s functions
are recovered and amplitudes grow without limit. For the finite-sized forcing the
velocity field and displacement amplitude is proportional to t1/2 exp (−ωrt) and since
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Figure 13. Contours of ωε
i (solid lines) and the far-field approximation ω′i (dashed lines) given by (57) for (a) f = 0, (b) N = 2f, (c) f = 2N

and (d) N = 0. Colouring indicates frequency. Empty regions are where ωε
i lies outside the natural frequency range of freely propagating

waves. For large distances from the forcing (r, z � ε) both ωε
i and ω′ approach ωi defined by (15) and are there constant on straight lines

θ = constant.

Figure 14. Contours of ωr (solid lines) and the far-field approximation (dashed lines) given by (57) for (a) f = 0, (b) N = 2f, (c) f = 2N and
(d) N = 0. Colouring indicates magnitude of ωr . No contours for ωr > N are shown in (a) and (b), none for ωr > f in (c) and (d). High values of ωr
near the forcing region imply a rapid disappearance of internal waves.
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ωr > 0 for finite ε and z < 0, the response is an internal wave pulse. That is, at a fixed
position first growth occurs, roughly with t1/2, which peaks at tmax = 1/(2ωr) after

which the amplitudes decay. Note that p−1/2 is not in phase with u
1/2
r and w1/2 as for

the point forcing. Also u
1/2
φ and ξ1/2 are no longer exactly 90◦ out of phase with u

1/2
r

and w1/2, and u
1/2
r and w1/2 are not in phase with each other which implies that the

radial pulsation character of the response is lost. In the (r, z)-plane the velocity vector

is elliptically polarized. Since {|u1/2
r |, |u1/2

φ |, |w1/2|} ∝ {ωε
i r, |ωε

i /ω−|fr, ωε
i |(z + ε%)|} the

polarization relations do not hold.
Defining

A =
(f2 + ω2−)(N2 + ω2−)1/2

P 3/2
= |A|eiφA ,

we find, after a great deal of effort, that

1
2
(u1/2
r )2 =

(
te−2ωrt|A|2

(2π)3R′6ωε
i
3

)
r2 + ε2

1 + δ2
1

[1 + cos 2ϕ], (61)

1
2
(w1/2)2 = (· · ·) z2

1 + δ2
1

[
1 + cos 2ϕ+

2δ1 sin 2ϕ

1 + δ2
1

− 2δ2
1 cos 2ϕ

1 + δ2
1

]
, (62)

1
2
(u

1/2
φ )2 = (· · ·) f

2(r2 + ε2)

(1 + δ2
1)|ω2−|

[
1− cos 2ϕ− 2δ2 sin 2ϕ

1 + δ2
2

+
2δ2

2 cos 2ϕ

1 + δ2
2

]
, (63)

and

1
2
N2(ξ1/2)2 = (· · ·) N2z2

(1 + δ2
1)|ω2−|

×
[
1− cos 2ϕ− 2(1− δ1δ2)(δ1 + δ2) sin 2ϕ

(1 + δ2
1)(1 + δ2

2)
+

2(δ1 + δ2)
2 cos 2ϕ

(1 + δ2
1)(1 + δ2

2)

]
, (64)

where

ϕ = ωε
i t+ π/4 + φA, δ1 = ε/r, δ2 = ωr/ω

ε
i . (65)

The terms (· · ·) in (62)–(64) are the same as the first term in (61). When we let ε = 0 in
these expressions, add them all up and multiply by R2 sin θ we get the energy density
W ′ = tF , i.e. (49), with F as in (44). When ε 6= 0 things do not add up as neatly as in
§ 4.2.2. The reason is that the phase relations are altered by the terms containing δ1 and
δ2 in the various expressions in square brackets in (61)–(64). Also the factors between
(· · ·) and the terms in square brackets are more complicated than when ε = 0. But,
the time-dependent cosines and sines in these expressions represent oscillations about
time-dependent, non-oscillatory parts which are the factors preceding the square-
bracketed terms. These oscillations do not contribute to the growth in an averaged
sense (averaged over an oscillation period). In § 4.2.2 the correct wave energy density
(49) would also have been found by putting cos 2ϕ = 0 in (45), (46) and (48) before
adding them. Similarly, the average wave energy density for the finite-sized forcing is
obtained by setting the cosines and sines in (61)–(64) equal to zero, adding them and
multiplying by R2 sin θ. This gives

W ′ = te−2ωrt

[
1 +

ω′i
2

|ω−|2
] |f2 + ω2−|2|N2 + ω2−||N2 − ω2

i |1/2R2

(1 + δ2
1)(2π)3|P |3|N2 − f2|1/2ωε

i
3R′4

. (66)

In the limit ε = 0 this reduces to (49).
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The decay rate ωr is large in regions underneath the forcing. There, formally,
amplitudes peak early and waves rapidly disappear. However, since we are using a
large-time expansion, the leading-order behaviour is not reliable because the O(t−1/2)-
correction may not be small at early times. We focus therefore on the behaviour far
from the forcing and at large times.

An example of how W ′ evolves in the (r, z)-plane is shown in figure 15. This case
with N = 2f is representative for all cases with N 6= 0. The domain is large compared
to the forcing size, i.e. the main boxes have dimensions 103ε × 103ε but the smaller
boxes show the evolution in a domain of size 102ε × 102ε. Non-dimensional times
start at ft = 100. The white line is a cone at the angle θmax = 0.27π defined in § 4.2.2
along which the energy flux is maximal for the point forcing (see figure 10b). As time
progresses wave energy rapidly disappears in the smaller domain near the forcing.
There the decay rate ωr is relatively large, as figure 14 indicates. Near the surface,
wave energy does not diminish as rapidly as further down because ωr is smaller near
the surface. Essentially the same events occur in the larger domain but at later times.
At early times in this sequence we see in the far field a tendency for the wave energy
to be symmetric about the maximum flux direction for the point source/sink. Energy
clearly propagates outwards but an asymmetric distribution is eventually established.
The asymmetry is a consequence of the decay rates ωr underneath the maximum flux
axis being higher than above it. For larger N/f ratios wave energy propagates more
in the horizontal, in accordance with the results of § 4.2.2. In the limit f = 0 (stratified
fluid) energy propagates roughly along the axis θmax = π/3 as in figure 10(a). Similar
energy distributions as in figure 15 are found, but rotated slightly upwards. When
N/f becomes smaller the energy distribution patterns rotate downwards. In the limit
N → 0 (rotating homogeneous fluid) energy propagates along the vertical. This is
illustrated in figure 16. Only in this limit does the energy density distribution remain
symmetric about the maximum flux direction for point forcing, i.e. the vertical axis
r = 0. As in figure 15 the wave energy disappears in an ever expanding region, initially
rapidly near the forcing because the decay rate ωr is large there (figure 14d). There is
again a propagating pulse, with highest amplitudes along the vertical.

In figure 17(a) we show how W ′ varies with time at the three positions marked by
dots in figure 15. They lie on the maximum-flux cone θmax = 0.27π. It is seen that
further away from the forcing the pulse peaks later. This is easily understood and
physically trivial. The peak occurs according to (66) at tmax = 1/(2ωr). For larger
distances from the source ωr becomes smaller. If we rotated the measuring positions
by some angle dθ upwards, maintaining the same distance R from the centre of the
forcing, we would observe the peaks at later times because ωr becomes smaller at each
position, while rotated downwards at earlier times. The peak amplitude diminishes
with the distance from the forcing and closer to the forcing there is a more rapid
pulse than further away. Figure 17(b) shows how the energy density varies along the
maximum-flux cone at different times. We show it as a function of r and not as a
function of R, but the graph would have been the same since r = R sin θmax. At early
times the maximum amplitude of the wave energy in figure 17(b) is higher than at
later times. This is also clearly seen in figure 15. This is a consequence of energy
conservation: as time progresses wave energy spreads out over space and consequently
amplitudes decay.

Clearly the results presented here are for the far field where a good approximation
to (66) is

W ′ ≈ te−2ωrtF, (67)
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Figure 15. Evolution of wave energy density W ′ given by (66) for N = 2f in response to the forcing
ws = S(r; ε)δ(t), normalized by the maximum W ′

max of W ′ that occurred at the earliest time shown
(ft = 100). Contours are limited to values between 0 and 50% of the maximum of W ′ at ft = 100.
All values higher than 0.5W ′

max(ft = 100) are the same colour. The white line is the ray of maximum
energy flux for the point forcing (ε = 0) shown in figure 10(b) (ωi = 1.52f or θmax = 0.27π). Yellow
dots are ‘measuring’ positions for figure 17(a). Times are as indicated. For a further description
see text.
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Figure 16. Evolution of wave energy density W ′ given by (66) for N = 0 in response to the forcing
ws = S(r; ε)δ(t), normalized by the maximum W ′

max of W ′ that occurred at the earliest time shown
(ft = 50). Contours are limited to values between 0 and 50% of the maximum of W ′ at ft = 50.
All values higher than 0.5W ′

max(ft = 50) have been given the same colour. Times are as indicated.
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Figure 17. (a) Evolution of wave energy density at the three ‘measuring points’ shown in figure 15
(r = 100ε, 200ε and 500ε) and (b) wave energy distribution along the maximum flux ray at times
ft = 100, ft = 300 and ft = 600. In (a) dashed vertical lines mark the time tmax when the pulse
peaks at each position. In (a) amplitudes have been normalized by the peak amplitude that occurs
at r = 100ε, and in (b) by the maximum amplitude that occurs along the ray at ft = 100. Numbers
along the vertical axis indicate the value of the maximum of each curve (to within a fraction of a
percent).

with F given by (44) and ωr approximated by (57). In the far field the time tmax when
the pulse peaks at a given observer position and the amplitude of the peak are

tmax =
1

2ωr
≈ ωi|N2 − f2|1/2

2|f2 − ω2
i ||N2 − ω2

i |1/2
R

ε
, W ′(tmax) ≈ |f

2 − ω2
i ||N2 − ω2

i |
e(2π)3ω2

i

1

εR
. (68)

The arrival time of the peak is proportional to the distance R from the forcing. Its
amplitude depends on the angle θ or ωi but is otherwise inversely proportional to
R. The tmax have been marked in figure 17(a) by the dashed vertical lines, and the
W ′(tmax) values, relative to the value at the measuring point closest to the forcing,
have been marked on the vertical axis. Figure 17(a) shows that in the far field the
arrival times are indeed proportional to the distance from the forcing and the peak
amplitudes inversely proportional to R, both to within a fraction of a percent. The
far-field approximation is therefore very good at these distances from the forcing.
In figure 17(b) the peaks occur at positions rmax that shift outwards with time. The
distance Rmax(t) along a ray ωi = constant where this peak occurs is for the far
field derived from (67) by solving ∂RW

′ = 0. With that determined one can calculate
W ′(Rmax(t)), i.e. how the shifting peak decays with time. The solution is

Rmax(t) ≈ ε|f2 − ω2
i ||N2 − ω2

i |1/2
ωi|N2 − f2|1/2 t,

W ′(Rmax(t)) ≈ |N
2 − f2|1/2|f2 − ω2

i ||N2 − ω2
i |1/2

e2(2π)3ωi

1

t
. (69)

Thus, the peak moves along a ray of constant ωi with a constant speed and decays
with t−1. In figure 17(b) the W ′(Rmax(t)) values relative to the value at the earliest time
(ft = 100) have been marked on the vertical axis. It is found that to within a fraction
of a percent the peak amplitudes decay with t−1. This is another confirmation that
the far-field approximation is very good at these distances from the forcing. We also
compared the graphs shown in figure 15 directly with graphs of the energy density
evolution in the far-field approximation, i.e. (67) with ωr approximated by (57). But
for small differences near the forcing, they were indistinguishable.

With the far-field expressions we can determine what the total wave energy is as a
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function of θ or ωi. If we integrate W ′ given by (67) from R = R1 to R = ∞ and over
the azimuthal angle φ we get

Ei(R > R1, θ, t) =

∫ ∞
R1

∫ 2π

0

W ′ dφ dR =
|f2 − ω2

i (θ)||N2 − ω2
i (θ)|

ε(2π)2ω2
i (θ)

[1− exp (−2γt/R1)],

(70)
where

γ =
ε|f2 − ω2

i (θ)||N2 − ω2
i (θ)|1/2

ωi(θ)|N2 − f2|1/2 (71)

comes from writing ωr ≈ γ/R for the far-field approximation (57). This is the energy
density in θ-space so that the total energy outside a hemisphere of radius R1 at a

given time is
∫ π/2

0
Ei(R > R1, θ, t) dθ. In frequency space the density is

Ei(R > R1, ωi, t) =
|f2 − ω2

i |1/2|N2 − ω2
i |1/2

ε(2π)2ωi
[1− exp (−2γt/R1)], (72)

and the total energy is then
∫
Ei(R > R1, ωi, t) dωi with integration over the range

of values ωi can take. In figure 18(a) we show how Ei(R > R1, ωi, t) evolves with
time when N = 2f. For R1 we took the radius R corresponding to the observer
position at r = 100ε on the maximum-flux cone θmax = 0.27π. At early times Ei
is roughly symmetric about the maximum-flux frequency for the point forcing, in
accordance with figure 15. As time progresses the peak in the energy distribution
shifts towards lower frequencies. This corresponds to the upward shift of the patterns
in figure 15. If we normalize the energy distribution at each time with the total energy∫
Ei dωi, we find that energy is not conserved in a given frequency band but spreads

to neighbouring frequency bands. After ft = 1000, Ei(R > R1, ωi, t) in figure 18(a)
barely changes anymore. At this point almost all wave energy has propagated beyond
R = R1. In the last panel of figure 15 there is still a narrow band of relatively high
wave energy in the domain with r < 100ε but because it is so narrow both in terms of
the range of θ or ωi its total energy is very small compared to what has propagated
out of this domain. By letting t→∞ in (70), we obtain the wave-energy distribution

Ei(θ) =
|f2 − ω2

i (θ)||N2 − ω2
i (θ)|

ε(2π)2ω2
i (θ)

, Ei(ωi) =
|f2 − ω2

i |1/2|N2 − ω2
i |1/2

ε(2π)2ωi
. (73)

It follows from (73) that the wave-energy distribution has a maximum at ωi = ωmax =
(Nf)1/2. Figure 18(a) shows that at ft = 1000 the peak energy occurs very close to
this frequency (ωi =

√
2f).

In figure 18(b) we show the evolution of wave energy for the stronger stratification
N = 10f. The maximum-flux cone for the point forcing is at an angle θmax close to
π/3. For R1 we took the radius R where the maximum-flux cone is at r = 100ε. Time
is measured in inertial periods and because the stratification is stronger than in the
case of figure 18(a), things evolve faster. Again a shift of wave energy towards f with
increasing time is observed. For large times the peak approaches ωi = (Nf)1/2 =

√
10f.

In the limit f → 0, or N/f →∞, the maximum occurs at ωi = 0, i.e. the horizontally
propagating zero-frequency waves in the far field are the most energetic in a stratified
fluid. In the limit N → 0 the maximum also occurs at ωi = 0, i.e. the vertically
propagating zero-frequency waves in the far field are the most energetic in a rotating
homogeneous fluid. The far-field approximation has been found to be still very good
at distances ten times smaller than used in figure 18. With R1 = O(10ε) the final wave
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Figure 18. Evolution of wave energy density Ei(R > R1, ωi, t) given by (72) for (a) N = 2f and (b)
N = 10f. It gives all the wave energy outside a hemisphere of radius R1 placed about the centre
of the forcing ws = S(r; ε)δ(t). R1 = 133ε in (a), R1 = 117ε in (b) (see text). Dashed lines indicate
the frequency at which the energy density and flux for the point forcing is maximal, (a) 1.52f and
(b) 5.2f. For large time (ft = 1000 in (a), ft = 100 in (b)) almost all waves have propagated out
of the hemisphere and the final wave energy distribution (73) is established. It has a maximum at
ωi =

√
Nf.

energy distribution is established about ten times earlier. For N = 2f (figure 18a) this
would be at roughly ft = 100, for N = 10f (figure 18b) it would be at about ft = 10.

The total wave energy Ei is
∫ π/2

0
Ei(θ) dθ or

∫
Ei(ωi) dωi. For example

N = 0 : Ei =
1

ε(2π)2

∫ π/2

0

|f2 − ω2
i (θ)| dθ

=
1

ε(2π)2

∫ f

0

|f2 − ω2
i |1/2 dωi =

1

4

f2

4πε
= Ek(0), (74)

f = 0 : Ei =
1

ε(2π)2

∫ π/2

0

|N2 − ω2
i (θ)| dθ

=
1

ε(2π)2

∫ N

0

|N2 − ω2
i |1/2 dωi =

1

4

N2

4πε
= Ep(0). (75)

In (74) Ek(0) is the kinetic energy of the initial vortex (see § 4.3), in (75) Ep(0) is
the potential energy stored in the initial vertical displacement field. As discussed in
§ 4.3 we expected in these two cases all of the initial energy to be converted to wave
energy, because in neither case an asymptotic vortex remained. The integral for Ei in
the general case is much harder but can be evaluated exactly and we find (54) again.
The conclusion is therefore that energy is conserved if the total energy of the O(t1/2)
wave field is added to the remaining energy stored in the asymptotic vortex.

4.4.2. Buoyancy oscillations

To leading order the velocity components of the buoyancy oscillations are

ws = S(r; ε)δ(t) : {ur, uφ, w} = 2Re
{Nr, ifr, Nz}Nei(Nt−π/4)

(2π)3/2(r2 + ε2)3/2(N2 − f2)1/2

× 1

(Nt)3/2
[1 + O((Nt)−1) + O(t′−1

N )], (76)
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Figure 19. Regions of validity (shaded areas) of the leading-order behaviour for a given degree
of precision of (a) the buoyancy oscillations given by (76) and (77) and (b) the inertial oscillations
given by (78) and (79). With increasing time in (a) the region expands downwards, in (b) upwards
(see text).

ws = S ′(r; ε)δ(t) : {ur, uφ, w} = 2Re
{Nr, ifr, Nz}3εNei(Nt−π/4)

(2π)3/2(r2 + ε2)5/2(N2 − f2)1/2

× 1

(Nt)3/2
[1 + O((Nt)−1) + O(t′−1

N )]. (77)

Here t′N = |N2 − ω′i2|t/N. Note that (77) = −∂ε(76). When we let ε → 0 in (76)
the result for the Green’s function (40) is recovered. With finite ε amplitudes are
well-behaved everywhere. In the first case the horizontal velocity amplitude decays
with r−2 for large r and in the second case with r−4, but the decay rates with time
are the same. Assuming Nt � 1, the leading-order behaviour for both cases is also
valid when t′N � 1 and the situation is as in §4.2.1: there are horizontal velocities
varying with the buoyancy frequency, radial oscillations along lines θ =constant, and
with increasing time the horizontal velocity amplitude becomes depth-independent in
areas where t′N � 1. For a given tolerably small error δ, determined by a fixed large
value of t′N , it follows that errors smaller than δ are found in an increasingly larger
region between the upper surface z = 0 and a surface defined by ω′i = C(t), which is
the grey area in figure 19(a). The arrows indicate how this area expands with time.

4.4.3. Inertial oscillations

For ws = S(r; ε)δ(t) inertial oscillations are part of the response with velocity
components

{ur, uφ} = 2Re
9εr

z4

{f, if}f3ei(ft+3π/4)

(2π)3/2(N2 − f2)3/2(ft)5/2
[1 + O((ft)−1) + O(t′f

−1
)], (78)

and

w = 2Re
6ε

z3

{f}f3ei(ft+3π/4)

(2π)3/2(N2 − f2)3/2(ft)5/2
[1 + O((ft)−1) + O(t′f

−1
)], (79)

with t′f = |ω′i2 − f2|t/f. Unlike the buoyancy oscillations, they disappear when the
size of the forcing shrinks to zero (ε → 0). They decay rapidly in the vertical, which
indicates that they are surface-confined. They have a fleeting existence: they decay
with t−5/2 whereas the buoyancy oscillations decay with t−3/2. Note that these inertial
oscillations have a non-zero vertical velocity component. There are radial oscillations
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along lines θ = constant plus an azimuthal flow slaved to ur through ∂tuφ = −fur .
We cannot let z → 0 in these expressions because ω′i → f as z → 0, and t′f

−1 → ∞.
The leading-order behaviour holds for a given time and a given degree of precision
in regions underneath an ω′i = constant surface. This is sketched in figure 19(b). For
increasing time the region of validity of (78) and (79) shifts towards the surface.

5. Discussion
The purpose of this paper has been to develop insight into the response of a

rotating stratified fluid to surface forcing of the kind sketched in the introduction. An
overview of the main results, open questions and other matters of possible interest
follow now. First we note that the Green’s functions in § 2 for arbitrary combinations
of N and f for the particular problem studied here appear new. They differ by a factor
2 from the Green’s functions for internal point sources in a fluid of infinite extent
in all directions. This is because the Green’s function(s) for the semi-infinite domain
with a rigid upper lid can be constructed from that for the infinite domain by placing
two point sinks symmetrically on either side of the surface and then letting them
approach each other. For f = 0 our result reduces to that of Dickinson (1969) for a
point source/sink in a stratified fluid of infinite extent. He derived a Green’s function
for a scalar W from which through differentiation the velocity fields and pressure
can be determined, which he did not do. Our h (14) coincides when f = 0 with his
W except for the factor 2. Dickinson derived the complete asymptotic series of hN, hi
for f = 0 and the leading-order term in (38) is, besides the factor 2, the same as his
(f enters in our expression through the definition of ωi). Different representations
using special functions have been derived for f = 0 by Gordeichik & Ter-Krikorov
(1996). We expressed the Green’s functions in terms of two scalar fields ψ and h which
are related to each other: ψ = ∂th(· · · ; t) + N2

∫ t
0
h(· · · ; t′) dt′. This is not obvious if

one considers (14) but follows easily from (A 12) in the Appendix. Upon combining
(18) with the expression for Gw in (13), it follows that the velocity field is determined
by h alone according to

u = (Gu, Gv, Gw) = ∂2
t∇h+N2∇hh+ zf2∂zh+ f∇h ∧ z

×
[
∂th(· · · ; t) +N2

∫ t

0

h(· · · ; t′) dt′
]
.

For N = 0 this reduces to the example Hart (1981) gave for a homogeneous rotating
fluid (he did not calculate h though); for f = 0 it becomes the expression Voisin
(1991) gives for a stratified fluid (where our h is called ψ). The velocity field due
to the finite-sized forcings can also be expressed in this fashion in terms of a single
scalar potential h, but to see this the Appendix needs to be consulted.

For each of the impulsive forcings the first stage in the dynamics is potential
flow followed when f 6= 0 by the formation of a vortex (§ 3.1–§ 3.4). Physically it is
easily understood why cyclones or anticyclones form, depending on the sign of the
forcing (suction or pumping). In each case an unbalanced initial condition is created
and adjustments follow. The O(t)-adjustments are the leading-order behaviour of the
transient internal wave field. Somewhat surprising is that the streamline patterns
(figure 8) are independent of the value of N/f while flow directions do depend on the
value of N/f. These O(t)-adjustments in the axial plane lead to changes in the vortices.
Remarkably, (§ 4.1) asymptotically the vortices become self-similar to what they were
initially, according to the scaling z → (N/f)z. How this comes about is not clear. It is
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also remarkable (§ 4.3) that for both finite-sized forcings the asymptotic vortices have
their energy equally divided between potential and kinetic energy whereas initially
Ep/Ek = (N/f)2 and that in both cases the same fraction of the total initial energy
goes to the waves and oscillations although the initial conditions are quite different.
It is unlikely that this is always true for initial conditions such that asymptotically a
vortex or geostrophically balanced current remains but it is intriguing. When f = 0
all initial potential energy goes to the waves and oscillations (there is no kinetic
energy, i.e. no initial vortex), whereas for increasingly smaller N < f with fixed f 6= 0
more and more of the initial energy is converted into waves and oscillations and the
vortex becomes more stretched in the vertical. For fixed f 6= 0 and increasing N > f
the vortex becomes more compressed in the vertical and more energy goes again to
the waves. This may seem surprising because for large N a stronger vortex remains.
Inspection of (53) shows that when N > f the final vortex has indeed more kinetic
energy than initially. But, more potential energy is released than needed to make up
for the kinetic energy deficit, and for increasing N the energy surplus becomes larger.
For N > f we could say that the waves’ energy comes from a release of potential
energy. Vice versa, when N < f potential energy increases while the kinetic energy
decreases and the waves’ energy comes from a release of kinetic energy. In the limit
N = 0 the vortex disappears. A simple argument can explain this for the finite-sized
forcings: an infinitely long, depth-independent vortex has infinite total energy. This
is impossible to create with injection or suction of a finite volume of fluid with a
finite-amplitude velocity distribution at the surface. A Taylor column can only be
established with such forcing in a fluid layer of finite depth.

An attempt to isolate the vortices’ evolution from the wave field failed.
Since linear internal waves carry no linearized Ertel potential vorticity q(x; t) =
ωz(x; t) − f ∫ t

0
∂zw(x; t′′) dt′′, where ωz = ∇h ∧ uh, x = (x, y, z), it appeared that if

these operations were applied to the fields, internal waves would become ‘invisible’
and only the vortices would remain. But, it can be shown that the vortices also
have q = 0 at all times. The explanation is that all initial relative vertical vorticity
ωz is created through vortex tube stretching/compression by the potential flow, i.e.

ωz = f∂zξ, with ξ the vertical displacement ξ =
∫ t

0
w(t′) dt′ and q = 0 everywhere

initially and afterwards. This illustrates that transient internal wave fields can create
zero-potential-vorticity carrying geostrophic currents or vortices in a rotating fluid:
consider a location where a circularly symmetric wave packet passes through. The
radial velocity ur is proportional there to A(t) cos(ωit+ φ) where A(t) is the envelope
of the wave packet and ωi the frequency and φ an arbitrary phase. The azimuthal
velocity v is determined by the equation ∂tv = −fur and after the wave packet has
passed by v(t = ∞) = v(0) − f ∫ ∞

0
u(t′) dt′, with v(0) the initial azimuthal velocity. If

we take for example A(t) = t exp (−αt)

v(t = ∞) = v(0) + f
(ω2

i − α2) cosφ+ 2αωi sinφ

(α2 + ω2
i )

2
.

Depending on whether α > ωi (a rapid pulse) or α < ωi (a slow pulse) and on the
phase φ, v(∞) can be either smaller or larger than v(0). This is not very different
from the Rossby adjustment problem (Gill 1982) where the evolution of a free-surface
displacement is studied for a homogeneous rotating fluid. It is invariant in the y-
direction. The Coriolis force acting on the velocity component u in the x-direction
leads ultimately to steady geostrophic flow v in the y-direction.

In § 4.2.2 we established for the point-forcing how the flux of internal wave energy
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depends on N/f. For N = 0 the maximum flux is in the vertical (figure 10), which
corresponds to the maximum group velocity direction according to (5). For f = 0
however the flux is maximal in a direction that makes an angle θ = π/3 with
the vertical, which is not the maximum group velocity direction. This result can
heuristically be explained for the point forcing as follows: the Fourier spectrum of the
initial vertical displacement field ξ = −z/2πR3 is ξ̃ = 2im/|k|2. Introducing the angle
θ with the vertical again, we have ξ̃ = 2i sin θ/|k|. Switching to spherical coordinates
in wavenumber space the potential energy density is N2ξ̃ξ̃?|k|2 cos θ d|k| dθ dφ which
is proportional to sin2 θ cos θ. Multiplying this by U g (i.e. 4) we see that the flux in

spectral space varies with sin3 θ cos θ which for any |k| is maximal for θ = π/3 (i.e.
cos θ = 1/2). This argument may be too simple since the evolution cannot entirely
be determined by just the spectrum of the initial displacement field, but it points in
the right direction. Thus, it appears that the surprise for f = 0 is due to the fact
that although the group velocity is maximal for θ = π/2 (zero-frequency waves), the
energy density in wavenumber space vanishes there and the flux is maximal at an
intermediate angle.

Studies closest to ours are the one by Bretherton (1967), who studied the response
of a homogeneous rotating fluid to the impulsive displacement of an infinitely long
horizontal cylinder along the rotating axis, the study by Hendershott (1969) of the
response of a stratified rotating fluid to impulsively started oscillations of a sphere,
and Voisin’s (1991) extensive review article. In the last, results are given for the
response of a stratified fluid to an impulsive expansion of a sphere. Absent from these
studies is a recognition that to leading order the internal wave field propagates as a
pulse, as discussed in § 4.4.1. Bretherton finds that for large time at a fixed position
the velocity fields decay with t−1/2. For large time, but fixed R/t (an observer moving
with constant speed), he finds that velocity amplitudes grow with t. Hendershott finds
that at a fixed position first amplitudes grow with t1/2 and ultimately decay with
t−1/2. Voisin cites similar results. In all three cases it is clear that a pulse-like wave
field should be observed at some distance from the forcing. The initial t1/2-growth
followed by t−1/2-decay does suggest something pulse-like. However, Voisin mentions
that for the pulsed sphere the t−1/2-decay is found in an ever expanding ‘torus’.
This must correspond to the expanding low-amplitude regions seen in figures 15 and
16 where the pulse has peaked and the leading-order term has become very small.
In these regions the O(t−1/2)-correction to the internal wave field may dominate. It
appears that in this study for the first time a reasonably complete ‘global’ picture of
a propagating internal wave field has been established.

With domain sizes as in figures 15 and 16 the source/sink is almost point-like for
an observer. But, even the smallest finite horizontal scale of the forcing is enough
to completely alter the response as compared to the response to point forcing. The
unbounded growth of amplitudes in the latter case can be accounted for by the infinite
energy stored in the initial condition. For the forcing ws = S(r; ε)δ(t) the total initial
energy is finite and the wave field is well-behaved. The pulse is best described by
the t1/2e−ωrt behaviour of the velocity amplitudes. The far-field approximation of the
relevant quantities (57) leading to the approximation (67) for the wave energy density
is very good. Analytical expressions describing the propagation of the pulse have been
derived and we also determined the global energy spectrum (73) of the internal wave
field. The total wave energy is equal to the difference between the energy stored in the
initial condition and the energy of the asymptotically remaining vortex. Thus, buoy-
ancy and inertial oscillations, the O(t−1/2)-correction to the internal wave field, and
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all higher corrections, asymptotically play no role in the energy budget. They do not
propagate, decay algebraically and with time the associated energy becomes negligible.

It is remarkable that the global energy distribution Ei(ωi) (73) varies with ωi
just as the group velocity U g (4) does. It was obtained by integrating over space
outside a hemisphere surrounding the forcing region. For N 6= 0 the energy density
distribution is not symmetric about any particular angle θ or frequency ωi as seen
in for example figure 15. Only far from the forcing is this approximately true, with
symmetry about the maximum flux direction for the point forcing. With increasing
time the region where symmetry is found moves outwards. The angle about which
symmetry is found does not correspond to the frequency where Ei(ωi) is maximal
when N 6= 0. The former is a solution of ∂ωiF = 0 with F given by (44), the latter
a solution of ∂ωiEi(ωi) = 0. A simple explanation for why Ei and U g appear to be
related has not been found. Above we gave a simple argument explaining why when
f = 0 for the point forcing the flux or energy density is maximal along the line
θ = π/3. For the finite-sized forcing the spectrum of the initial vertical displacement
field ξ = (−z + ε)/2πR3

ε is ξ̃ = 2i sin θe−ε|k| cos θ/|k|. Now the potential energy density
is proportional to sin2 θ cos θe−2ε|k| cos θ . If we multiply this by U g we find that when

f = 0 the flux in spectral space varies with sin3 θ cos θe−2ε|k| cos θ/|k|. It is maximal at
an angle θ for which 4 cos2−1 + 2ε|k| sin2 cos = 0. When ε > 0 the solution depends
on |k|. For very small |k| it approximates θ = π/3. The group velocity is high for
small |k| and this explains why at a given time in the far field the density tends to be
maximal about the maximum flux angle for the point forcing. For large |k| however
the angle approaches θ = π/2 (cos θ = 0). Now the group velocity is small and this is
a plausible explanation for why closer to the forcing region at a given time the energy
density is highest near the surface, as in figure 15 where N = 2f > 0 instead of f = 0.

The forcing ws = S(r; ε)δ(t) was chosen for mathematical convenience. The response
to forcings that are similar to this one, say a Gaussian distribution, is most likely not
very different. The far field for the other finite-sized forcing, ws = S ′(r; ε)δ(t), is far
more complicated and no thorough investigation has been made of its properties. The
propagating part consists to leading order of a component that grows with t3/2e−ωrt
and one that grows with t1/2e−ωrt. In § 4.1 it was shown that for this forcing the
asymptotic vortex is quite different from the vortex for the other forcing. But, in § 4.3
we showed that the same fraction of the initial energy goes to the waves in each case.
The wave energy distribution for this complex case is therefore most likely the same
function of N, f and ωi as (73), but the analysis is too involved to prove this.

The observation in § 4.4.1 that the propagating internal wave field does not satisfy
the polarization relations may be of interest to oceanographers. In testing energy
spectra in the internal wave frequency band for the existence of random ensembles
of linear internal waves, the polarization relations are used to derive theoretical
expressions that only depend on the frequency. Systematic deviations are found by
Olbers (1983) and his conclusion that ‘this systematic disparity from internal wave
kinematics points towards a complex contamination process’ may not be correct. Since
the oceanic internal wave field is at least partially generated by coherent forcings like
in this study, every data set will be ‘contaminated’ by non-random internal waves, a
continuum of which can violate the polarization relations.

In § 4.2.1 and § 4.4.2 we showed that non-vertical buoyancy oscillations are a
component of the response. For f = 0 this was observed by Voisin (1991) for
point forcing and forcing by an impulsively expanding sphere in an infinite stratified
fluid. The fact that this is not in accord with the properties of plane waves at this
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frequency (non-vertical oscillations) and contradicts group velocity theory (they are
spread throughout space but should not propagate) led to the cryptic remark that ‘this
testifies to their non-Boussinesq origin’. Since these results are found in a model where
the Boussinesq approximation has been made, the explanation should also be found
within that framework. That they are non-vertical is not so mysterious if it is realized
that for plane waves with the buoyancy frequency the wave vector k is horizontal
(see figure 2). That is, the buoyancy oscillations are then depth-independent. If initial
conditions are such that vertical buoyancy oscillations are part of the response with
amplitudes that vary with depth, then horizontal velocity components are forced
to oscillate with the buoyancy frequency too in order that ∇ · u = 0. Note that the
buoyancy oscillations for the forcing ws = S ′(r; ε)δ(t) given by (77) decay more rapidly
in the horizontal than for ws = S(r; ε)δ(t), i.e. their horizontal scale is linked with
the horizontal scale of the forcings and therefore the vertical displacement fields. A
reasonable explanation is therefore the following. The evolution of the initial vertical
displacement field, which varies throughout space, is governed by the radiation of
internal waves. At frequency N they do not propagate. Since they are depth-dependent
they necessarily have horizontal components.

In § 4.4.3 the existence of non-horizontal inertial oscillations was noted. Bretherton
(1967), in his study of the impulsively displaced cylinder in a rotating fluid, also found
inertial oscillations distributed throughout space, but they decayed with t−3/2 whereas
here they decay with t−5/2. He could not find an entirely satisfactory explanation for
the development of these motions. The explanation for their non-horizontal character
is simple if we allow for the possibility that inertial oscillations are part of the response
but with amplitudes that vary in the horizontal (for a plane wave with the inertial
frequency the wave vector is vertical and there is thus no variation in the horizontal):
the divergence of the horizontal velocity drives a vertical component at the inertial
frequency. An explanation for why they are surface-confined in our problem and are
absent for the point forcing has not been found.

We have not analysed the evolution of the wave field close to the forcing region,
in particular the response in the unphysical regions shown in figure 13. The question
is whether there are actually trapped waves outside the natural frequency range or
not. With reference to the Appendix, this reduces mathematically to the question of
whether when the branch cut at ω− in figure 23(a) crosses one of the fixed branch cuts
there is a contribution to the inverse Laplace transform. With a simple transformation
the movable branch points at ω− and ω?− can be made fixed stationary phase points.
In the plane of the transform variable the steepest descent paths correspond then
almost exactly to the horizontal contours C− and C?− in figure 23. The fixed branch
points at ± iN and ± if become movable branch points with this transform. The
boundary of the unphysical region (thick lines in figures 13 and 14) corresponds to
when these branch points lie on the steepest descent path. For smaller ωr on the
boundary (closer to the surface generally and at large depths), these branch points
get closer to the stationary phase points. As ω− and ω?− move into the unphysical
range, the contour can still be deformed into one with segments along the steepest
descent paths and it appears therefore that the trapped waves exist. But, the details
are complicated and for a thorough investigation advanced techniques like uniformly
asymptotic expansions are probably needed (Bleistein & Handelsman 1986; Felsen &
Marcuvitz 1972). Physically the existence of these regions with trapped waves outside
the natural frequency band and their shape are most likely due to the interference of
plane waves propagating towards the axis from all sides. This requires further study.
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Appendix. Mathematical details
A.1. Green’s functions

For the derivation of the Green’s functions in § 2 we must calculate the transforms
(12) of the system of equations (11). First consider L−1

z w(k, l, s;ω) = w(k, l, z;ω).
Because

1

|A| =
1

2αω(ω2 + f2)

[
1

s+ α
− 1

s− α
]
, α =

(ω2 +N2)1/2

(ω2 + f2)1/2
(k2 + l2)1/2, (A 1)

there are poles at s = ± α. For z′ < 0 we close the contour in the right-hand side
of the complex s-plane and get zero as a result. For z′ > 0 (z < 0, the interior of
the fluid) we close in the left-half of the plane, encircling the two poles in positive
direction, and get

w(k, l, z;ω) =
(eαz

′
+ e−αz′)ws(k, l;ω)

2
+
ω(k2 + l2)(eαz

′ − e−αz′)ps(k, l;ω)

2α(ω2 + f2)
. (A 2)

The question is how the unknown surface pressure term ps is related to ws and how to
choose branch cuts in the ω-plane for the functions (ω2 +N2)1/2 and (ω2 + f2)1/2 that
appear in (A 1). Causality only imposes the condition that the cuts cannot run into
the right-hand side of the complex ω-plane. The following physical considerations are
used. The contour for L−1

t in the complex ω-plane can be deformed into one along
the imaginary axis, with indentations to the right of the singular points. The inverse
transform is then a Fourier transform

L−1
t (·) =

1

2π

∫ +∞

−∞
(·)eiω′t dω′ (ω′ ≡ ω/i)

where (·) stands for (A 2). For a given pair (k, l) (A 2) thus gives the vertical velocity
due to surface forcing periodic in the x- and y-directions which oscillates at a
frequency ω′. Note that when we write α = im in (A 1), m is the vertical component of
the wave vector which for given k, l, ω′ satisfies the dispersion relation (3). Consider
the case N > f (special case f = 0 included). Then for f < |ω′| < N, α given by (A 1)
is imaginary, and the terms e±αz′ in (A 2) are thus ‘wavy’ in the vertical. This is the
frequency range in which the system can support propagating waves. Energy must
propagate away from the surface (in the positive z′-direction) and phase propagation
must be in the negative z′-direction (radiation condition). If α is negative imaginary
for if < ω < iN and positive imaginary for −iN < ω < −if then the radiation
condition is satisfied if the terms proportional to eαz

′
in (A 2) vanish, i.e. when

ps(k, l;ω) =
−α(ω2 + f2)

ω(k2 + l2)
ws(k, l;ω). (A 3)

But, α is real when |ω| < f or |ω| > N and should with the choice (A 3) be
positive real so that the terms proportional to e−αz′ represent evanescent waves. The
combination of negative imaginary α for if < ω < iN and positive imaginary α for
−iN < ω < −if plus positive real α outside these ranges is obtained when for both
(ω2 +N2)1/2 and (ω2 + f2)1/2 branch cuts and phases as shown in figure 20 are used.
These are just three examples of many possibilities. For each choice of cuts both take
the same values when ω lies on the imaginary axis, approaching it from the right.
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Figure 20. A variety of branch cuts for the multi-valued function (ω2 + a2)1/2. Phases of ω− ia and
ω− (−ia) are θ+ and θ−, respectively. Phases and cuts are such that the function has the same value
when ω lies on the imaginary axis. These are the first Riemann sheets for each case. On crossing
a cut the sign of the complex value of the function changes. The lower diagram (c) shows how
the branch cut running from −ia to +ia is a limiting form of where both branch cuts are running
downwards and merge below ω = −ia. Signs of the real and imaginary part have been added to
clarify that when for example in (b) one enters the second Riemann sheet by crossing the upper
branch cut from the right to the left, the function takes the values found in (a) above the horizontal
branch cut at ω = ia. Similarly, when in (c) the cut is crossed from right to left, then on the second
Riemann sheet the function takes the same values as in (a) on the first Riemann sheet between the
two horizontal branch cuts.

The cuts need not be the same for (ω2 +N2)1/2 and (ω2 + f2)1/2. Inspection of (A 1)
shows that α behaves as described above. When (A 3) is used, the radiation condition
is satisfied and evanescence outside the natural frequency range occurs. For f > N
(special case N = 0 included) when using (A 3) the radiation condition is also satisfied
and evanescence outside the natural frequency range occurs for any combination of
branch cuts shown in figure 20. Applying L−1

z also to the other expressions in (11),
using (A 3), we get

u(k, l, z;ω) = (−fil − ωik)
(ω2 +N2)e−αz′

αω(ω2 + f2)
ws(k, l;ω), (A 4)
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v(k, l, z;ω) = (fik − ωil)
(ω2 +N2)e−αz′

αω(ω2 + f2)
ws(k, l;ω), (A 5)

w(k, l, z;ω) = −∂z′ e
−αz′

α
ws(k, l;ω), (A 6)

p(k, l, z;ω) =
−(ω2 +N2)e−αz′

αω
ws(k, l;ω). (A 7)

With the convolution theorem for Fourier and Laplace transforms (Morse & Feshbach
1953) it follows that

u(x, y, z; t) = Gu ◦ws =

∫ t

0

∫∫
Gu(x− x′, y− y′, z; t− t′)ws(x′, y′; t′) dx′ dy′ dt′, (A 8)

where Gu is obtained by applying FT−1 and L−1
t to (A 4) with ws(k, l;ω) = 1. The

functions Gv, Gw and Gp are determined in the same way. For FT−1 we have to
calculate the integral

I(x, y, z;ω) =
1

(2π)2

∫ +∞

−∞

∫ +∞

−∞
e−β(k2+l2)1/2z′−ikx−ily

(k2 + l2)1/2
dk dl, β =

(ω2 +N2)1/2

(ω2 + f2)1/2
,

(A 9)

where the term (k2+l2)−1/2 comes from the common factor 1/α occurring in (A 4)–(A 7)
after setting α = β(k2+l2)1/2. Using the operational relations FT−1{−ik,−il} = {∂x, ∂y}
we get

Gu = (f∂y + ω∂x)
(ω2 +N2)1/2

ω(ω2 + f2)1/2
I, Gv = (−f∂x + ω∂y)

(ω2 +N2)1/2

ω(ω2 + f2)1/2
I,

Gw = −∂z′ (ω2 + f2)1/2

(ω2 +N2)1/2
I, Gp =

−(ω2 +N2)1/2(ω2 + f2)1/2

ω
I,

 (A 10)

where the G are functions of {x, y, z, ω}. For z′ > 0 and ω-values such that α has a
positive real part (and thus β), the integral (A 9) converges. The answer is

I =
1

2π(β2z′2 + r2)1/2
=

(ω2 + f2)1/2

2πR(ω2 + ω2
i )

1/2
, (A 11)

with R and ωi given by (15). By the principle of analytic continuation (A 11) is true
for the entire ω-plane when the appropriate branch-cuts are made, originating at the
points ω = ± iωi. For the case f < N and imaginary ω in the ranges 0 < |ω| < f and
N < |ω| < ∞ (the evanescent wave regime), β is real and positive with the choice of
branch cuts for (ω2 + f2)1/2 and (ω2 + N2)1/2 discussed above. In these ω-ranges I
must therefore be positive real. Since (ω2 + f2)1/2 is positive imaginary when ω > iN
and because f2 6 ω2

i 6 N2, it follows that for these ω-values (ω2 + ω2
i )

1/2 has to
be positive imaginary. Similarly, (ω2 + ω2

i )
1/2 has to be negative imaginary when

ω < −iN. Furthermore, (ω2 +ω2
i )

1/2 should be positive real for −if < ω < if. These
demands are met when the branch cuts and phases for (ω2 + ω2

i )
1/2 are any of those

shown in figure 20. This is also true when f > N. Putting (A 11) in (A 10) and using
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L−1
t {ωn} = ∂nt we get (13) with

ψ =L−1
t {A}, h =L−1

t {B}, A =
(ω2 +N2)1/2

2πRω(ω2 + ω2
i )

1/2
,

B =
1

2πR(ω2 +N2)1/2(ω2 + ω2
i )

1/2
. (A 12)

The contour for L−1
t runs vertically to the right of the branch points at ω = ± iN,

ω = ± iωi and the pole at ω = 0 that occurs in A. Alternative contours due to
a deformation of the original contour into the left-hand side of the ω-plane are
shown below in figure 21. SinceL−1

t {(ω2 +a2)−1/2} = J0(at),L−1
t {(ω2 +a2)1/2−ω} =

(a/t)J1(at), and L−1
t {ω−1} = U(t), (14) follows from the convolution theorem.

A.2. Early-time behaviour

The result (17) follows directly from inspection ofA and B in (A 12) with ωi = f = N
substituted and application of L−1

t . To derive (24) and (25) it is convenient to
introduce the forcing at the spectral level. The Fourier spectrum of S is

S(k, l; ε) =

∫∫
εei(kx+ly)

2π(ε2 + x2 + y2)3/2
dx dy = e−ε

√
k2+l2 . (A 13)

Next we substitute ws(k, l;ω) = S(k, l; ε) in (A 4)–(A 7) and perform FT−1 and L−1
t .

For FT−1 we need to replace I in (A 10) by Iε:

Iε(x, y, z;ω) =
1

(2π)2

∫∫
e−β(k2+l2)1/2z′−ε√k2+l2−ikx−ily

(k2 + l2)1/2
dk dl

=
1

2π(r2 + (βz′ + ε)2)1/2
, (A 14)

and calculate L−1
t . For N = f we have β = 1 (see (A 9)) and the solution is (19) with

R replaced by Rε defined in (24). The quickest way to derive (28) is to substitute power
series expansions in t for the Bessel functions in (14). In order to get the results stated
in § 3.4 for the finite-sized forcing ws = S(r; ε)δ(t), I in (A 10) has to be replaced by
Iε. When N 6= f

Iε =
(ω2 + f2)1/2

2πR′D(ω)1/2
, (A 15)

where

D(ω) = ω2 + ω′i
2 − (2εz/R′2)(ω2 + f2)1/2(ω2 +N2)1/2, (A 16)

with R′ and ω′i defined in (57). This follows from substitution of β given by (A 9) in
(A 14). The response for the various velocity components and pressure are given by
(13) with ψ, h as in (A 12) but with A,B replaced by

Aε =
(ω2 +N2)1/2

2πR′ωD(ω)1/2
, Bε =

1

2πR′(ω2 +N2)1/2D(ω)1/2
. (A 17)

By expanding Aε and Bε in inverse powers of ω and using L−1
t {ω−n−1} = U(t)tn/n!,

(24), (25), (32) and (34) are found.

A.3. Large-time behaviour

For the point forcing ψ, h = L−1
t {A},L−1

t {B} with A,B defined by (A 12). For
ws = S(r; ε)δ(t) we have ψ = L−1

t {Aε} and h = L−1
t {Bε} with Aε,Bε defined
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Figure 21. Alternative contours for the inverse Laplace transform L−1
t of A and B obtained by

deforming the original contour which ran to the right of the branch points and the pole into the
left-hand side of the ω-plane. The integrals along the horizontal branch cuts in (a) at ω = ± iN give
rise to buoyancy oscillations, the integrals along the movable branch cuts at ω = ± iωi determine
the internal wave field. The residue of the pole at ω = 0 gives the asymptotic vortex (see text).
Different combinations of branch cuts are shown in (b) and (c). Upon deforming the original
inversion contour second Riemann sheets are entered (dashed lines) but the results are the same.

in (A 17) while for the forcing ws = S ′(r; ε)δ(t) one has ψ = L−1
t {−∂εAε} and

h = L−1
t {−∂εBε}. The following techniques have been used to determine the large-

time behaviour of the responses described in § 4.

A.3.1. Vortices

For the point forcing (Green’s functions) the contour for L−1
t is deformed into the

left half-plane, enclosing the singular points of A,B. There is a pole in A at ω = 0
when N 6= 0. Examples of equivalent contours are shown in figure 21 for N > f. The
case N < f is entirely analogous. The closed contour about the pole at ω = 0 gives
ψ∞ in (35). This pole is also encountered upon deforming the original contour for
L−1

t when calculating the transform of {Aε} and {−∂εAε}. Examples of equivalent
contours are shown below in figure 23. The residues at ω = 0 give (36) and (37),
respectively. When in each case δ(t) is replaced by some F(t) (switch-on forcing) with
the Laplace transform F(ω) then

lim
t→∞

∫ t

0

F(t′) dt′ ≡M(∞) = lim
ω→0
F(ω).

The asymptotic vortex is determined by the behaviour of F(ω)A(ω) in the vicinity
of ω = 0 for ws = δ(x)δ(y)F(t) and for ws = S(r; ε)F(t) and ws = S ′(r; ε)F(t) by
F(ω)Aε(ω). If M(∞) 6= 0 then F(0) 6= 0 and the pole from the factor 1/ω in A,Aε

remains. The residue changes by a factor M(∞) and the asymptotic vortices (35),
(36) and (37) form again but multiplied by an overall factor M(∞). When M(∞) = 0
we cannot immediately conclude that the vortices vanish asymptotically. This will
only be true if F(t) is such that to leading order F(ω) ∝ ωn+1 for ω ≈ 0, where
n = 0, 1, 2, · · ·. The following class of functions has this property. Let F(t) = dtG(t) with
G(t) some smooth function with the properties 0 <

∣∣∫ ∞
0
G(t′) dt′

∣∣ < ∞ and G(0) = 0

and limt→∞G(t) = 0. This implies
∫ ∞

0
F(t′) dt′ = M(∞) = 0 and F(ω) = ωG(ω)

with G(ω) = Lt{G(t)}. Since we assumed 0 <
∣∣∫ ∞

0
G(t′) dt′

∣∣ < ∞ we have G(0) 6= 0
and F ≈ ωG(0) for ω ≈ 0 which cancels the pole in A,Aε and asymptotically
the vortices vanish. This class of functions has n = 0. Cases with n > 0 are those
where F(t) = dn+1

t G(t) with
∣∣∫ ∞

0
G(t′) dt′

∣∣ > 0 and G and its derivatives up to order n
vanishing at t = 0,∞ With the above restrictions on F(t) when M(∞) = 0 it follows
that the asymptotic vortex’s amplitude is proportional to M(∞).
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A.3.2. Asymptotic waves and buoyancy oscillations for Green’s functions

Both A and B have branch points at ω = ± iωi and at ω = ± iN. Branch cuts
and phases for the multi-valued functions (ω2 + N2)1/2, (ω2 + ω2

i )
1/2 can be any of

those shown in figure 20. Branch-cut integrals result when the contour for L−1
t is

deformed into the left-hand side of the complex ω-plane. Examples are shown in
figure 21. The same result is obtained in each example, even when sections of the
contours lie on the second Riemann sheet (indicated by dashed lines). This follows
from figure 20 where we indicated the values the functions take depending on the
choice of cuts. Their choice was dictated by the radiation condition. The movable
branch cut from iωi can lie anywhere between the extremes if and iN as indicated
by the arrows in the first example in figure 21. Only the integrals along Ci, CN
have to be calculated because along C?

N,i the complex conjugate is obtained. Thus,

L−1
t {A,B} = (Ci +C?

i ) + (CN +C?
N) + Resω=0, where the residual term occurs for A

when N 6= 0. The branch cut integrals give rise to the ‘wavy’ part of the response.
A and B are developed for CN in powers of s = (ω − iN)1/2 and for Ci in powers
of s = (ω − iωi)

1/2, i.e. series of the form
∑

n αns
n−1/2 are used. Integration along for

example CN yields a series π−1eiNt
[
α0t
−1/2 +

∑∞
n=1(−1)nΓ (n+ 1

2
)αnt

−n−1/2
]

because

(2πi)−1

∫ (0)+

−∞
sn−1/2est ds = π−1/2 dnt t

−1/2 = π−1(−1)nΓ
(
n+ 1

2

)
t−n−1/2. (A 18)∫ (0)+

−∞ ds indicates an integration path coming from −∞ along the real axis in the
s-plane which loops around the origin (the branch point) in the positive direction
and then returns to −∞ along the real axis. Because of the multi-valuedness of sn−1/2

the two parts do not cancel each other. With branch cuts and phases as in figure 20
the result is (A 18). Using this to evaluate the branch-cut integrals one gets (38).
Mathematically the required longer waiting period for (38) to be valid to a given
degree of precision when ωi ≈ N is because the branch points at ω = iωi and ω = iN
get close to each other in figure 21. The time when the two contours Ci and CN
give well-separated contributions scales with the inverse of the separation distance
between the branch points, i.e. roughly with |N −ωi|−1. Similar remarks apply to the
special case N = 0 or f = 0 where when ωi ≈ 0 the asymptotic results are only valid
for large time t� ω−1

i because the branch points at ω = ± iωi become close.

A.3.3. Asymptotic waves and oscillations for a finite-sized forcing

Internal gravity waves are associated with movable branch points which are roots
of D(ω) = 0. D(ω) can be factorized as follows:

D(ω) =

(
r2 + ε2

R′2

)
[(ω2+f2)1/2+%(ω2+N2)1/2][(ω2+f2)1/2+%?(ω2+N2)1/2], (A 19)

where

% = z/(ir − ε), R′2 = (r2 + ε2 + z2). (A 20)

Roots of D(ω) = 0 are

ω± = ∓
(
%2N2 − f2

1− %2

)1/2

, ω?
± = ±

(
%?

2
N2 − f2

1− %?2

)1/2

. (A 21)

The values have been made unambiguous by taking for the complex terms (%(?)2N2−
f2)/(1 − %(?)2) phases ϕ with −π < ϕ 6 π. For z, r 6= 0 the roots are symmetrically
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Figure 22. Location of the roots of D(ω) = 0 as a function of observer position. For r > ε the
imaginary parts of the roots always lie in the natural frequency range (solid lines), for r < ε they
can lie outside the natural frequency ranges (dashed lines). Examples are for (a) N > f and (b)
N < f. Arrows indicate increasing depth |z|.

positioned about the real and imaginary axis in the ω-plane

ω− = −ωr + iωε
i ω?

− = −ωr − iωε
i ω+ = ωr − iωε

i ω?
+ = ωr + iωε

i . (A 22)

In figure 22 we show schematically how the position of ωε
i and ωr vary with the

observer position. For r > ε the roots have for all z an imaginary part ωε
i in the

natural frequency range, i.e. in figure 22(a) f 6 ωε
i (r > ε, z) < N while in figure 22(b)

N < ωε
i (r > ε, z) 6 f. When r < ε there are ranges of z where ωε

i lies outside the
natural frequency range.

The approximations for ωε
i and ωr (57) in the far field were derived by expanding

D(ω)−1/2 in powers of εz/R′2:

1

D(ω)1/2
=

1

(ω2 + ω′2i )1/2

[
1 +

∞∑
n=1

αnb
n

(
(ω2 + f2)1/2(ω2 +N2)1/2

(ω2 + ω′i
2)

)n]
, (A 23)

where

αn =
(−1)n(2n− 1) · (2n− 3) · · · 5 · 3 · 1

2nn!
, b =

−2εz

R′2
, (A 24)

and ω′i given by (57). Thus, in this far-field approximation the branch points associated
with the internal gravity waves are located at ω = ±iω′i . The next step is suspect
but leads to a good approximation. We expand (A 23) in powers of (ω − iω′i) and
keep for each n in the series only the highest negative power of (ω− iω′i). That is, we
approximate (A 23) near ω = iω′i by

1

D(ω)1/2
≈ 1

(2iω′i)1/2(ω − iω′i)1/2

×
[

1 +

∞∑
n=1

αnb
n

(
(f2 − ω′i2)1/2(N2 − ω′i2)1/2

2iω′i

)n

1

(ω − iω′i)n

]
. (A 25)

To calculate ψi = L−1
t {Aε}, which determines the horizontal velocity components

and pressure, the remaining prefactor in Aε (A 17) is also expanded in powers of
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(ω − iω′i) and approximated by retaining only the lowest-order term

(ω2 +N2)1/2

2πR′ω
≈ (N2 − ω′i2)1/2

2πR′iω′i
. (A 26)

We multiply (A 25) by (A 26) and perform the branch-cut integral. Using

L−1
t {(ω − iω′i)

−1/2−n} =
2ntn−1/2eiω′i t√

π(2n− 1) · (2n− 3) · · · 5 · 3 · 1 (n = 1, 2, . . .) (A 27)

we get after adding the complex conjugate

ψi ≈ 2Re
(N2 − ω′i2)1/2ei(ω′i t−3π/4)

(2π)3/2R′ω′i
3/2t1/2

[
1+

∞∑
n=1

(−b)n
n!

(
(f2 − ω′i2)1/2(N2 − ω′i2)1/2

2iω′i

)n

tn

]
.

(A 28)

For (A 27) a phase and cut as shown in figure 20 for (ω − iωi)
1/2 is used. This is the

correct choice because if we let ε→ 0 in (A 28) we get the leading-order behaviour of
ψi for the Green’s function given by (38). Had we not approximated (A 23) by (A 25)
and used (A 26), then for each n in this series there would have been additional terms
of order tn−1, tn−2, . . . . We have retained with the approximations the ‘worst’ possible
divergent sub-sequence. The term in square brackets in (A 28) is recognized as the
expansion of an exponential. Substituting b from (A 24) we get

[· · ·] = exp

(
εz|(f2 − ω′i2)1/2(N2 − ω′i2)1/2|

ω′iR′2
t

)
, (A 29)

where we used the properties of (ω2 + f2)1/2 and (ω2 + N2)1/2 on the first Riemann
sheets defined in figure 20, which were chosen to satisfy the radiation condition. For
z < 0 (underneath the surface) (A 29) is an amplitude that decays exponentially with
time. In this fashion (57) was derived. It implies that in the inverse Laplace transform
for the far field we pick up contributions from approximations of ω− and ω?−, i.e.
the zeros of D(ω) in the left-half of the ω-plane. Since the inversion contour has to
be to the right of all the singularities of the integrand, it appears that there are no
contributions from ω+ and ω?

+. Further analysis of (A 19) shows that ω− and ω?− are

indeed the only zeros of D(ω) when the first sheets of (ω2 +f2)1/2 and (ω2 +N2)1/2 are
used while ω+ and ω?

+ are roots of D(ω) = 0 if the second sheet of either (ω2 + f2)1/2

or (ω2 + N2)1/2 is used. The branch points at ω+ and ω?
+ are therefore ‘invisible’ to

the inversion contour.
In figure 23 we sketch what happens when the contour for the inversion is deformed

into the left-hand side of the ω-plane. Branch points are found at ω = ω
(?)
− and cuts

need to be made. A simple example is shown in figure 23(a) where all branch cuts
are parallel to each other. When |Imω

(?)
− | = ωε

i is in the natural frequency range,

the contour wraps around these branch cuts, indicated by C
(?)
− (Im denotes the

imaginary part of a complex quantity). Also integrals along the cuts for (ω2 + f2)1/2

and (ω2 + N2)1/2 result, indicated by C
(?)
f and C

(?)
N , respectively. On the right-hand

side the branch points at ω = ω
(?)
+ are shown, with open circles to indicate that they

do not lie on the Riemann sheet where the inversion takes place. A pole at ω = 0 is
encountered for ψ = L−1

t {Aε} when N 6= 0, which results in the asymptotic vortex

(36). As the observer position varies ω(?)
− can cross one of the fixed cuts as indicated by

the arrows. This is when we enter the ‘unnatural’ regions shown in figures 13 and 14.
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Figure 23. Alternative contours for the inverse Laplace transform L−1
t of Aε and Bε resulting

from a deformation of the original contour into the left-hand side of the ω-plane. Phases and cuts
for the multi-valued functions defining the first Riemann sheets of (ω2 + f2)1/2 and (ω2 +N2)1/2 are
as in figure 20. The branch points ω+ and ω?

+ (open circles) always lie on a Riemann sheet entered

by crossing one of the branch cuts of (ω2 + f2)1/2 or (ω2 +N2)1/2. They are not encountered when
the contour is deformed. In (a) the branch points ω− and ω?− only lie on the Riemann sheet of
the inversion when ωε

i is in the natural frequency range (closed circles) but cross a cut when ωε
i is

outside the natural frequency range (open circles). This occurs only when r < ε (see figure 13). In
(b) ω− and ω?− always lie on the Riemann sheet of the inversion but are not encountered if ωε

i is
outside the natural range when the contour is deformed across the branch cuts of (ω2 + f2)1/2 and
(ω2 +N2)1/2 (dashed sections). The pole at ω = 0 results in the asymptotic vortices (36) and (37).

An open symbol is assigned to ω(?)
− in that case to indicate that they no longer lie on

the first sheet. Now the deformed contour does not encounter the singularities at ω(?)
− .

In figure 23(b) we give an example of a more complex combination of branch cuts
for (ω2 + f2)1/2 and (ω2 +N2)1/2 that could be used to satisfy the radiation condition.
Again the singularities at ω = ω

(?)
+ (not shown) do not lie on the Riemann sheet

under consideration. The contour can be deformed across the cuts for (ω2 + f2)1/2

and (ω2 + N2)1/2 (dashed lines indicate when the contour lies on the second sheet
of the function). But, the results are the same for C (?)

N and C
(?)
f in figure 23(a) and

23(b). When ωε
i is in the natural frequency range, the same contour integrals C (?)

− as

in figure 23(a) occur. However, ω(?)
− stays on the first Riemann sheet when ωε

i moves
outside the natural frequency range. Again the branch points are not encountered
when the contour is deformed across the cuts for (ω2 + f2)1/2 and (ω2 +N2)1/2.

For the branch cut integral C−, D(ω) is developed in powers of (ω−ω−). By writing
D(ω) as

D(ω) =

(
r2 + ε2

R′2

)
(1− %2)(1− %?2

)(ω − ω−)(ω − ω?−)(ω − ω+)(ω − ω?
+)

[(ω2 + f2)1/2 − %(ω2 +N2)1/2][(ω2 + f2)1/2 − %?(ω2 +N2)1/2]
,

(A 30)

it follows that the first term in this expansion is (ω − ω−)2iωε
i P where

P =

(
r2 + ε2

R′2

)
(1− %2)(1− %?2

)(ω− − ω+)(ω− − ω?
+)

[(ω2− + f2)1/2 − %(ω2− +N2)1/2][(ω2− + f2)1/2 − %?(ω2− +N2)1/2]
.

(A 31)

To leading order (58), (59) and (60) result when the complex conjugate is added. The
integrals along CN and C?

N give (76). The longer time required for (76) to be valid
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when N ≈ ω′i is that then either the upper or lower leg of the contour CN comes close
to the branch point at ω = ω− (see figure 23). The contour integral along Cf and its
conjugate, leading to (78) and (79), is also straightforward. The longer time required
for (78) and (79) to be valid when f ≈ ω′i is that then the contour Cf runs close to
the branch-point at ω = ω− (see figure 23).
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